From ce15409721762b0549834a943d3bcacd44a8c1a3 Mon Sep 17 00:00:00 2001
From: Ultralytics Assistant
<135830346+UltralyticsAssistant@users.noreply.github.com>
Date: Sat, 5 Oct 2024 14:10:12 +0200
Subject: [PATCH] Ultralytics Code Refactor https://ultralytics.com/actions
(#13344)
Refactor code for speed and clarity
---
README.md | 40 ++++++++++++++++-----------------
README.zh-CN.md | 38 +++++++++++++++----------------
utils/loggers/clearml/README.md | 4 ++--
3 files changed, 41 insertions(+), 41 deletions(-)
diff --git a/README.md b/README.md
index 4e3709540..4208c1e9b 100644
--- a/README.md
+++ b/README.md
@@ -47,7 +47,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
-See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
+See the [YOLOv8 Docs](https://docs.ultralytics.com/) for details and get started with:
[](https://badge.fury.io/py/ultralytics) [](https://pepy.tech/project/ultralytics)
@@ -62,7 +62,7 @@ pip install ultralytics
##
Documentation
-See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
+See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for full documentation on training, testing and deployment. See below for quickstart examples.
Install
@@ -80,7 +80,7 @@ pip install -r requirements.txt # install
Inference
-YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
+YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
@@ -123,7 +123,7 @@ python detect.py --weights yolov5s.pt --source 0 #
Training
-The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
+The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
@@ -140,22 +140,22 @@ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml -
Tutorials
-- [Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) 🚀 RECOMMENDED
+- [Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) 🚀 RECOMMENDED
- [Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/) ☘️
-- [Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training)
-- [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 🌟 NEW
-- [TFLite, ONNX, CoreML, TensorRT Export](https://docs.ultralytics.com/yolov5/tutorials/model_export) 🚀
-- [NVIDIA Jetson platform Deployment](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano) 🌟 NEW
-- [Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation)
-- [Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling)
-- [Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity)
-- [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution)
-- [Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers)
-- [Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description) 🌟 NEW
-- [Roboflow for Datasets, Labeling, and Active Learning](https://docs.ultralytics.com/yolov5/tutorials/roboflow_datasets_integration)
-- [ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) 🌟 NEW
-- [YOLOv5 with Neural Magic's Deepsparse](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization) 🌟 NEW
-- [Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration) 🌟 NEW
+- [Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)
+- [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) 🌟 NEW
+- [TFLite, ONNX, CoreML, TensorRT Export](https://docs.ultralytics.com/yolov5/tutorials/model_export/) 🚀
+- [NVIDIA Jetson platform Deployment](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano/) 🌟 NEW
+- [Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)
+- [Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling/)
+- [Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity/)
+- [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)
+- [Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers/)
+- [Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description/) 🌟 NEW
+- [Roboflow for Datasets, Labeling, and Active Learning](https://docs.ultralytics.com/yolov5/tutorials/roboflow_datasets_integration/)
+- [ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration/) 🌟 NEW
+- [YOLOv5 with Neural Magic's Deepsparse](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization/) 🌟 NEW
+- [Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration/) 🌟 NEW
@@ -234,7 +234,7 @@ YOLOv5 has been designed to be super easy to get started and simple to learn. We
- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
- **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.
Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
-- **TTA** [Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation) includes reflection and scale augmentations.
Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
+- **TTA** [Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/) includes reflection and scale augmentations.
Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
diff --git a/README.zh-CN.md b/README.zh-CN.md
index f1dc961ee..1c772416b 100644
--- a/README.zh-CN.md
+++ b/README.zh-CN.md
@@ -45,7 +45,7 @@ YOLOv5 🚀 是世界上最受欢迎的视觉 AI,代表