Auto-format by https://ultralytics.com/actions
parent
cb0baea1ca
commit
d0d9281968
|
@ -449,6 +449,7 @@ def export_openvino(file, metadata, half, int8, data, prefix=colorstr("OpenVINO:
|
|||
Quantization transform function.
|
||||
|
||||
Extracts and preprocess input data from dataloader item for quantization.
|
||||
|
||||
Parameters:
|
||||
data_item: Tuple with data item produced by DataLoader during iteration
|
||||
Returns:
|
||||
|
|
|
@ -156,7 +156,6 @@ def random_perspective(
|
|||
):
|
||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
||||
# targets = [cls, xyxy]
|
||||
|
||||
"""Applies random perspective transformation to an image, modifying the image and corresponding labels."""
|
||||
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||
width = im.shape[1] + border[1] * 2
|
||||
|
|
|
@ -64,7 +64,6 @@ class Callbacks:
|
|||
thread: (boolean) Run callbacks in daemon thread
|
||||
kwargs: Keyword Arguments to receive from YOLOv5
|
||||
"""
|
||||
|
||||
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||
for logger in self._callbacks[hook]:
|
||||
if thread:
|
||||
|
|
|
@ -1104,7 +1104,8 @@ def extract_boxes(path=DATASETS_DIR / "coco128"):
|
|||
def autosplit(path=DATASETS_DIR / "coco128/images", weights=(0.9, 0.1, 0.0), annotated_only=False):
|
||||
"""Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
||||
Usage: from utils.dataloaders import *; autosplit()
|
||||
Arguments
|
||||
|
||||
Arguments:
|
||||
path: Path to images directory
|
||||
weights: Train, val, test weights (list, tuple)
|
||||
annotated_only: Only use images with an annotated txt file
|
||||
|
@ -1183,7 +1184,7 @@ class HUBDatasetStats:
|
|||
"""
|
||||
Class for generating HUB dataset JSON and `-hub` dataset directory.
|
||||
|
||||
Arguments
|
||||
Arguments:
|
||||
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
||||
autodownload: Attempt to download dataset if not found locally
|
||||
|
||||
|
@ -1314,7 +1315,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
|
|||
"""
|
||||
YOLOv5 Classification Dataset.
|
||||
|
||||
Arguments
|
||||
Arguments:
|
||||
root: Dataset path
|
||||
transform: torchvision transforms, used by default
|
||||
album_transform: Albumentations transforms, used if installed
|
||||
|
|
|
@ -518,7 +518,6 @@ def check_font(font=FONT, progress=False):
|
|||
|
||||
def check_dataset(data, autodownload=True):
|
||||
"""Validates and/or auto-downloads a dataset, returning its configuration as a dictionary."""
|
||||
|
||||
# Download (optional)
|
||||
extract_dir = ""
|
||||
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
|
||||
|
@ -1023,7 +1022,6 @@ def non_max_suppression(
|
|||
Returns:
|
||||
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
||||
"""
|
||||
|
||||
# Checks
|
||||
assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
|
||||
assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
|
||||
|
|
|
@ -350,7 +350,8 @@ class GenericLogger:
|
|||
"""
|
||||
YOLOv5 General purpose logger for non-task specific logging
|
||||
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
|
||||
Arguments
|
||||
|
||||
Arguments:
|
||||
opt: Run arguments
|
||||
console_logger: Console logger
|
||||
include: loggers to include
|
||||
|
|
|
@ -80,7 +80,7 @@ class ClearmlLogger:
|
|||
- Initialize ClearML Task, this object will capture the experiment
|
||||
- Upload dataset version to ClearML Data if opt.upload_dataset is True
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
hyp (dict) -- Hyperparameters for this run
|
||||
|
||||
|
@ -133,7 +133,7 @@ class ClearmlLogger:
|
|||
"""
|
||||
Log scalars/metrics to ClearML.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
|
||||
epoch (int) iteration number for the current set of metrics
|
||||
"""
|
||||
|
@ -145,7 +145,7 @@ class ClearmlLogger:
|
|||
"""
|
||||
Log model weights to ClearML.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
model_path (PosixPath or str) Path to the model weights
|
||||
model_name (str) Name of the model visible in ClearML
|
||||
epoch (int) Iteration / epoch of the model weights
|
||||
|
@ -158,7 +158,7 @@ class ClearmlLogger:
|
|||
"""
|
||||
Log final metrics to a summary table.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
|
||||
"""
|
||||
for k, v in metrics.items():
|
||||
|
@ -168,7 +168,7 @@ class ClearmlLogger:
|
|||
"""
|
||||
Log image as plot in the plot section of ClearML.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
title (str) Title of the plot
|
||||
plot_path (PosixPath or str) Path to the saved image file
|
||||
"""
|
||||
|
@ -183,7 +183,7 @@ class ClearmlLogger:
|
|||
"""
|
||||
Log files (images) as debug samples in the ClearML task.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
files (List(PosixPath)) a list of file paths in PosixPath format
|
||||
title (str) A title that groups together images with the same values
|
||||
"""
|
||||
|
@ -199,7 +199,7 @@ class ClearmlLogger:
|
|||
"""
|
||||
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
image_path (PosixPath) the path the original image file
|
||||
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
class_names (dict): dict containing mapping of class int to class name
|
||||
|
|
|
@ -49,7 +49,7 @@ class WandbLogger:
|
|||
- Upload dataset if opt.upload_dataset is True
|
||||
- Setup training processes if job_type is 'Training'
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
run_id (str) -- Run ID of W&B run to be resumed
|
||||
job_type (str) -- To set the job_type for this run
|
||||
|
@ -90,7 +90,7 @@ class WandbLogger:
|
|||
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
||||
- Setup log_dict, initialize bbox_interval
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
opt (namespace) -- commandline arguments for this run
|
||||
|
||||
"""
|
||||
|
@ -120,7 +120,7 @@ class WandbLogger:
|
|||
"""
|
||||
Log the model checkpoint as W&B artifact.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
path (Path) -- Path of directory containing the checkpoints
|
||||
opt (namespace) -- Command line arguments for this run
|
||||
epoch (int) -- Current epoch number
|
||||
|
@ -159,7 +159,7 @@ class WandbLogger:
|
|||
"""
|
||||
Save the metrics to the logging dictionary.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
log_dict (Dict) -- metrics/media to be logged in current step
|
||||
"""
|
||||
if self.wandb_run:
|
||||
|
@ -170,7 +170,7 @@ class WandbLogger:
|
|||
"""
|
||||
Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
||||
|
||||
arguments:
|
||||
Arguments:
|
||||
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
||||
"""
|
||||
if self.wandb_run:
|
||||
|
@ -197,7 +197,7 @@ class WandbLogger:
|
|||
|
||||
@contextmanager
|
||||
def all_logging_disabled(highest_level=logging.CRITICAL):
|
||||
"""source - https://gist.github.com/simon-weber/7853144
|
||||
"""Source - https://gist.github.com/simon-weber/7853144
|
||||
A context manager that will prevent any logging messages triggered during the body from being processed.
|
||||
:param highest_level: the maximum logging level in use.
|
||||
This would only need to be changed if a custom level greater than CRITICAL is defined.
|
||||
|
|
|
@ -41,7 +41,6 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=".", names
|
|||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
|
||||
# Sort by objectness
|
||||
i = np.argsort(-conf)
|
||||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||
|
@ -103,7 +102,6 @@ def compute_ap(recall, precision):
|
|||
# Returns
|
||||
Average precision, precision curve, recall curve
|
||||
"""
|
||||
|
||||
# Append sentinel values to beginning and end
|
||||
mrec = np.concatenate(([0.0], recall, [1.0]))
|
||||
mpre = np.concatenate(([1.0], precision, [0.0]))
|
||||
|
@ -137,6 +135,7 @@ class ConfusionMatrix:
|
|||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
|
||||
Arguments:
|
||||
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||
|
@ -233,7 +232,6 @@ def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7
|
|||
|
||||
Input shapes are box1(1,4) to box2(n,4).
|
||||
"""
|
||||
|
||||
# Get the coordinates of bounding boxes
|
||||
if xywh: # transform from xywh to xyxy
|
||||
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
||||
|
@ -279,14 +277,15 @@ def box_iou(box1, box2, eps=1e-7):
|
|||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
|
||||
Arguments:
|
||||
box1 (Tensor[N, 4])
|
||||
box2 (Tensor[M, 4])
|
||||
|
||||
Returns:
|
||||
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||
IoU values for every element in boxes1 and boxes2
|
||||
"""
|
||||
|
||||
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
|
||||
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
||||
|
@ -304,7 +303,6 @@ def bbox_ioa(box1, box2, eps=1e-7):
|
|||
box2: np.array of shape(nx4)
|
||||
returns: np.array of shape(n)
|
||||
"""
|
||||
|
||||
# Get the coordinates of bounding boxes
|
||||
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
||||
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
||||
|
|
|
@ -29,7 +29,6 @@ def random_perspective(
|
|||
):
|
||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||||
# targets = [cls, xyxy]
|
||||
|
||||
"""Applies random perspective, rotation, scale, shear, and translation augmentations to an image and targets."""
|
||||
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||
width = im.shape[1] + border[1] * 2
|
||||
|
|
|
@ -14,7 +14,6 @@ def crop_mask(masks, boxes):
|
|||
- masks should be a size [n, h, w] tensor of masks
|
||||
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
|
||||
"""
|
||||
|
||||
n, h, w = masks.shape
|
||||
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
|
||||
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
|
||||
|
@ -33,7 +32,6 @@ def process_mask_upsample(protos, masks_in, bboxes, shape):
|
|||
|
||||
return: h, w, n
|
||||
"""
|
||||
|
||||
c, mh, mw = protos.shape # CHW
|
||||
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||||
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
|
||||
|
@ -51,7 +49,6 @@ def process_mask(protos, masks_in, bboxes, shape, upsample=False):
|
|||
|
||||
return: h, w, n
|
||||
"""
|
||||
|
||||
c, mh, mw = protos.shape # CHW
|
||||
ih, iw = shape
|
||||
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
|
||||
|
|
|
@ -17,10 +17,9 @@ class TritonRemoteModel:
|
|||
|
||||
def __init__(self, url: str):
|
||||
"""
|
||||
Keyword arguments:
|
||||
Keyword Arguments:
|
||||
url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000
|
||||
"""
|
||||
|
||||
parsed_url = urlparse(url)
|
||||
if parsed_url.scheme == "grpc":
|
||||
from tritonclient.grpc import InferenceServerClient, InferInput
|
||||
|
|
Loading…
Reference in New Issue