New `@try_export` decorator (#9096)
* New export decorator * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New export decorator * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * rename fcn to func * rename to @try_export Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/9105/head
parent
eab35f66f9
commit
d0fa0042bd
569
export.py
569
export.py
|
@ -67,8 +67,8 @@ if platform.system() != 'Windows':
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from models.yolo import Detect
|
from models.yolo import Detect
|
||||||
from utils.dataloaders import LoadImages
|
from utils.dataloaders import LoadImages
|
||||||
from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, check_yaml,
|
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
|
||||||
colorstr, file_size, print_args, url2file)
|
check_yaml, colorstr, file_size, get_default_args, print_args, url2file)
|
||||||
from utils.torch_utils import select_device, smart_inference_mode
|
from utils.torch_utils import select_device, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
|
@ -89,200 +89,199 @@ def export_formats():
|
||||||
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
||||||
|
|
||||||
|
|
||||||
|
def try_export(inner_func):
|
||||||
|
# YOLOv5 export decorator, i..e @try_export
|
||||||
|
inner_args = get_default_args(inner_func)
|
||||||
|
|
||||||
|
def outer_func(*args, **kwargs):
|
||||||
|
prefix = inner_args['prefix']
|
||||||
|
try:
|
||||||
|
with Profile() as dt:
|
||||||
|
f, model = inner_func(*args, **kwargs)
|
||||||
|
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
|
||||||
|
return f, model
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
return outer_func
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
||||||
# YOLOv5 TorchScript model export
|
# YOLOv5 TorchScript model export
|
||||||
try:
|
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
||||||
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
f = file.with_suffix('.torchscript')
|
||||||
f = file.with_suffix('.torchscript')
|
|
||||||
|
|
||||||
ts = torch.jit.trace(model, im, strict=False)
|
ts = torch.jit.trace(model, im, strict=False)
|
||||||
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
||||||
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
||||||
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
||||||
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
||||||
else:
|
else:
|
||||||
ts.save(str(f), _extra_files=extra_files)
|
ts.save(str(f), _extra_files=extra_files)
|
||||||
|
return f, None
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
return f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
||||||
# YOLOv5 ONNX export
|
# YOLOv5 ONNX export
|
||||||
try:
|
check_requirements(('onnx',))
|
||||||
check_requirements(('onnx',))
|
import onnx
|
||||||
import onnx
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
||||||
f = file.with_suffix('.onnx')
|
f = file.with_suffix('.onnx')
|
||||||
|
|
||||||
torch.onnx.export(
|
torch.onnx.export(
|
||||||
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
||||||
im.cpu() if dynamic else im,
|
im.cpu() if dynamic else im,
|
||||||
f,
|
f,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
opset_version=opset,
|
opset_version=opset,
|
||||||
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
||||||
do_constant_folding=not train,
|
do_constant_folding=not train,
|
||||||
input_names=['images'],
|
input_names=['images'],
|
||||||
output_names=['output'],
|
output_names=['output'],
|
||||||
dynamic_axes={
|
dynamic_axes={
|
||||||
'images': {
|
'images': {
|
||||||
0: 'batch',
|
0: 'batch',
|
||||||
2: 'height',
|
2: 'height',
|
||||||
3: 'width'}, # shape(1,3,640,640)
|
3: 'width'}, # shape(1,3,640,640)
|
||||||
'output': {
|
'output': {
|
||||||
0: 'batch',
|
0: 'batch',
|
||||||
1: 'anchors'} # shape(1,25200,85)
|
1: 'anchors'} # shape(1,25200,85)
|
||||||
} if dynamic else None)
|
} if dynamic else None)
|
||||||
|
|
||||||
# Checks
|
# Checks
|
||||||
model_onnx = onnx.load(f) # load onnx model
|
model_onnx = onnx.load(f) # load onnx model
|
||||||
onnx.checker.check_model(model_onnx) # check onnx model
|
onnx.checker.check_model(model_onnx) # check onnx model
|
||||||
|
|
||||||
# Metadata
|
# Metadata
|
||||||
d = {'stride': int(max(model.stride)), 'names': model.names}
|
d = {'stride': int(max(model.stride)), 'names': model.names}
|
||||||
for k, v in d.items():
|
for k, v in d.items():
|
||||||
meta = model_onnx.metadata_props.add()
|
meta = model_onnx.metadata_props.add()
|
||||||
meta.key, meta.value = k, str(v)
|
meta.key, meta.value = k, str(v)
|
||||||
onnx.save(model_onnx, f)
|
onnx.save(model_onnx, f)
|
||||||
|
|
||||||
# Simplify
|
# Simplify
|
||||||
if simplify:
|
if simplify:
|
||||||
try:
|
try:
|
||||||
cuda = torch.cuda.is_available()
|
cuda = torch.cuda.is_available()
|
||||||
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
||||||
import onnxsim
|
import onnxsim
|
||||||
|
|
||||||
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
||||||
model_onnx, check = onnxsim.simplify(model_onnx)
|
model_onnx, check = onnxsim.simplify(model_onnx)
|
||||||
assert check, 'assert check failed'
|
assert check, 'assert check failed'
|
||||||
onnx.save(model_onnx, f)
|
onnx.save(model_onnx, f)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
return f, model_onnx
|
||||||
return f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')):
|
def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')):
|
||||||
# YOLOv5 OpenVINO export
|
# YOLOv5 OpenVINO export
|
||||||
try:
|
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||||||
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
import openvino.inference_engine as ie
|
||||||
import openvino.inference_engine as ie
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
||||||
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
||||||
|
|
||||||
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
||||||
subprocess.check_output(cmd.split()) # export
|
subprocess.check_output(cmd.split()) # export
|
||||||
with open(Path(f) / file.with_suffix('.yaml').name, 'w') as g:
|
with open(Path(f) / file.with_suffix('.yaml').name, 'w') as g:
|
||||||
yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g) # add metadata.yaml
|
yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g) # add metadata.yaml
|
||||||
|
return f, None
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
return f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
||||||
# YOLOv5 CoreML export
|
# YOLOv5 CoreML export
|
||||||
try:
|
check_requirements(('coremltools',))
|
||||||
check_requirements(('coremltools',))
|
import coremltools as ct
|
||||||
import coremltools as ct
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||||||
f = file.with_suffix('.mlmodel')
|
f = file.with_suffix('.mlmodel')
|
||||||
|
|
||||||
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
||||||
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
||||||
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
||||||
if bits < 32:
|
if bits < 32:
|
||||||
if platform.system() == 'Darwin': # quantization only supported on macOS
|
if platform.system() == 'Darwin': # quantization only supported on macOS
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
||||||
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
||||||
else:
|
else:
|
||||||
print(f'{prefix} quantization only supported on macOS, skipping...')
|
print(f'{prefix} quantization only supported on macOS, skipping...')
|
||||||
ct_model.save(f)
|
ct_model.save(f)
|
||||||
|
return f, ct_model
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
return ct_model, f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
return None, None
|
|
||||||
|
|
||||||
|
|
||||||
def export_engine(model, im, file, train, half, dynamic, simplify, workspace=4, verbose=False):
|
@try_export
|
||||||
|
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
||||||
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
||||||
prefix = colorstr('TensorRT:')
|
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
||||||
try:
|
try:
|
||||||
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
import tensorrt as trt
|
||||||
try:
|
except Exception:
|
||||||
import tensorrt as trt
|
if platform.system() == 'Linux':
|
||||||
except Exception:
|
check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',))
|
||||||
if platform.system() == 'Linux':
|
import tensorrt as trt
|
||||||
check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',))
|
|
||||||
import tensorrt as trt
|
|
||||||
|
|
||||||
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
||||||
grid = model.model[-1].anchor_grid
|
grid = model.model[-1].anchor_grid
|
||||||
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
||||||
export_onnx(model, im, file, 12, train, dynamic, simplify) # opset 12
|
export_onnx(model, im, file, 12, False, dynamic, simplify) # opset 12
|
||||||
model.model[-1].anchor_grid = grid
|
model.model[-1].anchor_grid = grid
|
||||||
else: # TensorRT >= 8
|
else: # TensorRT >= 8
|
||||||
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
||||||
export_onnx(model, im, file, 13, train, dynamic, simplify) # opset 13
|
export_onnx(model, im, file, 13, False, dynamic, simplify) # opset 13
|
||||||
onnx = file.with_suffix('.onnx')
|
onnx = file.with_suffix('.onnx')
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
||||||
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
||||||
f = file.with_suffix('.engine') # TensorRT engine file
|
f = file.with_suffix('.engine') # TensorRT engine file
|
||||||
logger = trt.Logger(trt.Logger.INFO)
|
logger = trt.Logger(trt.Logger.INFO)
|
||||||
if verbose:
|
if verbose:
|
||||||
logger.min_severity = trt.Logger.Severity.VERBOSE
|
logger.min_severity = trt.Logger.Severity.VERBOSE
|
||||||
|
|
||||||
builder = trt.Builder(logger)
|
builder = trt.Builder(logger)
|
||||||
config = builder.create_builder_config()
|
config = builder.create_builder_config()
|
||||||
config.max_workspace_size = workspace * 1 << 30
|
config.max_workspace_size = workspace * 1 << 30
|
||||||
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
||||||
|
|
||||||
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
||||||
network = builder.create_network(flag)
|
network = builder.create_network(flag)
|
||||||
parser = trt.OnnxParser(network, logger)
|
parser = trt.OnnxParser(network, logger)
|
||||||
if not parser.parse_from_file(str(onnx)):
|
if not parser.parse_from_file(str(onnx)):
|
||||||
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
||||||
|
|
||||||
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
||||||
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
||||||
LOGGER.info(f'{prefix} Network Description:')
|
LOGGER.info(f'{prefix} Network Description:')
|
||||||
|
for inp in inputs:
|
||||||
|
LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
|
||||||
|
for out in outputs:
|
||||||
|
LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
|
||||||
|
|
||||||
|
if dynamic:
|
||||||
|
if im.shape[0] <= 1:
|
||||||
|
LOGGER.warning(f"{prefix}WARNING: --dynamic model requires maximum --batch-size argument")
|
||||||
|
profile = builder.create_optimization_profile()
|
||||||
for inp in inputs:
|
for inp in inputs:
|
||||||
LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
|
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
||||||
for out in outputs:
|
config.add_optimization_profile(profile)
|
||||||
LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
|
|
||||||
|
|
||||||
if dynamic:
|
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine in {f}')
|
||||||
if im.shape[0] <= 1:
|
if builder.platform_has_fast_fp16 and half:
|
||||||
LOGGER.warning(f"{prefix}WARNING: --dynamic model requires maximum --batch-size argument")
|
config.set_flag(trt.BuilderFlag.FP16)
|
||||||
profile = builder.create_optimization_profile()
|
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
||||||
for inp in inputs:
|
t.write(engine.serialize())
|
||||||
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
return f, None
|
||||||
config.add_optimization_profile(profile)
|
|
||||||
|
|
||||||
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine in {f}')
|
|
||||||
if builder.platform_has_fast_fp16 and half:
|
|
||||||
config.set_flag(trt.BuilderFlag.FP16)
|
|
||||||
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
|
||||||
t.write(engine.serialize())
|
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
return f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_saved_model(model,
|
def export_saved_model(model,
|
||||||
im,
|
im,
|
||||||
file,
|
file,
|
||||||
|
@ -296,162 +295,142 @@ def export_saved_model(model,
|
||||||
keras=False,
|
keras=False,
|
||||||
prefix=colorstr('TensorFlow SavedModel:')):
|
prefix=colorstr('TensorFlow SavedModel:')):
|
||||||
# YOLOv5 TensorFlow SavedModel export
|
# YOLOv5 TensorFlow SavedModel export
|
||||||
try:
|
import tensorflow as tf
|
||||||
import tensorflow as tf
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||||||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
|
||||||
|
|
||||||
from models.tf import TFDetect, TFModel
|
from models.tf import TFModel
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||||
f = str(file).replace('.pt', '_saved_model')
|
f = str(file).replace('.pt', '_saved_model')
|
||||||
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||||||
|
|
||||||
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||||||
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
||||||
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||||||
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
||||||
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||||||
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
||||||
keras_model.trainable = False
|
keras_model.trainable = False
|
||||||
keras_model.summary()
|
keras_model.summary()
|
||||||
if keras:
|
if keras:
|
||||||
keras_model.save(f, save_format='tf')
|
keras_model.save(f, save_format='tf')
|
||||||
else:
|
else:
|
||||||
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
||||||
m = tf.function(lambda x: keras_model(x)) # full model
|
m = tf.function(lambda x: keras_model(x)) # full model
|
||||||
m = m.get_concrete_function(spec)
|
m = m.get_concrete_function(spec)
|
||||||
frozen_func = convert_variables_to_constants_v2(m)
|
frozen_func = convert_variables_to_constants_v2(m)
|
||||||
tfm = tf.Module()
|
tfm = tf.Module()
|
||||||
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x)[0], [spec])
|
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x)[0], [spec])
|
||||||
tfm.__call__(im)
|
tfm.__call__(im)
|
||||||
tf.saved_model.save(tfm,
|
tf.saved_model.save(tfm,
|
||||||
f,
|
f,
|
||||||
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
|
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
|
||||||
if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
return f, keras_model
|
||||||
return keras_model, f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
return None, None
|
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
||||||
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
||||||
try:
|
import tensorflow as tf
|
||||||
import tensorflow as tf
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||||||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||||
f = file.with_suffix('.pb')
|
f = file.with_suffix('.pb')
|
||||||
|
|
||||||
m = tf.function(lambda x: keras_model(x)) # full model
|
m = tf.function(lambda x: keras_model(x)) # full model
|
||||||
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
||||||
frozen_func = convert_variables_to_constants_v2(m)
|
frozen_func = convert_variables_to_constants_v2(m)
|
||||||
frozen_func.graph.as_graph_def()
|
frozen_func.graph.as_graph_def()
|
||||||
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
||||||
|
return f, None
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
return f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
||||||
# YOLOv5 TensorFlow Lite export
|
# YOLOv5 TensorFlow Lite export
|
||||||
try:
|
import tensorflow as tf
|
||||||
import tensorflow as tf
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||||
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||||||
f = str(file).replace('.pt', '-fp16.tflite')
|
f = str(file).replace('.pt', '-fp16.tflite')
|
||||||
|
|
||||||
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
||||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
||||||
converter.target_spec.supported_types = [tf.float16]
|
converter.target_spec.supported_types = [tf.float16]
|
||||||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||||
if int8:
|
if int8:
|
||||||
from models.tf import representative_dataset_gen
|
from models.tf import representative_dataset_gen
|
||||||
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
|
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
|
||||||
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
||||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
||||||
converter.target_spec.supported_types = []
|
converter.target_spec.supported_types = []
|
||||||
converter.inference_input_type = tf.uint8 # or tf.int8
|
converter.inference_input_type = tf.uint8 # or tf.int8
|
||||||
converter.inference_output_type = tf.uint8 # or tf.int8
|
converter.inference_output_type = tf.uint8 # or tf.int8
|
||||||
converter.experimental_new_quantizer = True
|
converter.experimental_new_quantizer = True
|
||||||
f = str(file).replace('.pt', '-int8.tflite')
|
f = str(file).replace('.pt', '-int8.tflite')
|
||||||
if nms or agnostic_nms:
|
if nms or agnostic_nms:
|
||||||
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
||||||
|
|
||||||
tflite_model = converter.convert()
|
tflite_model = converter.convert()
|
||||||
open(f, "wb").write(tflite_model)
|
open(f, "wb").write(tflite_model)
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
return f, None
|
||||||
return f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
||||||
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
||||||
try:
|
cmd = 'edgetpu_compiler --version'
|
||||||
cmd = 'edgetpu_compiler --version'
|
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
||||||
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
||||||
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
||||||
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
||||||
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
||||||
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
for c in (
|
||||||
for c in (
|
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
||||||
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
||||||
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
||||||
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
||||||
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
||||||
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
||||||
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
||||||
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
||||||
|
|
||||||
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
|
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
|
||||||
subprocess.run(cmd.split(), check=True)
|
subprocess.run(cmd.split(), check=True)
|
||||||
|
return f, None
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
return f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
||||||
# YOLOv5 TensorFlow.js export
|
# YOLOv5 TensorFlow.js export
|
||||||
try:
|
check_requirements(('tensorflowjs',))
|
||||||
check_requirements(('tensorflowjs',))
|
import re
|
||||||
import re
|
|
||||||
|
|
||||||
import tensorflowjs as tfjs
|
import tensorflowjs as tfjs
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
||||||
f = str(file).replace('.pt', '_web_model') # js dir
|
f = str(file).replace('.pt', '_web_model') # js dir
|
||||||
f_pb = file.with_suffix('.pb') # *.pb path
|
f_pb = file.with_suffix('.pb') # *.pb path
|
||||||
f_json = f'{f}/model.json' # *.json path
|
f_json = f'{f}/model.json' # *.json path
|
||||||
|
|
||||||
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
||||||
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
||||||
subprocess.run(cmd.split())
|
subprocess.run(cmd.split())
|
||||||
|
|
||||||
json = Path(f_json).read_text()
|
json = Path(f_json).read_text()
|
||||||
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
||||||
subst = re.sub(
|
subst = re.sub(
|
||||||
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
||||||
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
||||||
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
||||||
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
||||||
r'"Identity_1": {"name": "Identity_1"}, '
|
r'"Identity_1": {"name": "Identity_1"}, '
|
||||||
r'"Identity_2": {"name": "Identity_2"}, '
|
r'"Identity_2": {"name": "Identity_2"}, '
|
||||||
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
||||||
j.write(subst)
|
j.write(subst)
|
||||||
|
return f, None
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
return f
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
@smart_inference_mode()
|
@smart_inference_mode()
|
||||||
|
@ -524,22 +503,22 @@ def run(
|
||||||
f = [''] * 10 # exported filenames
|
f = [''] * 10 # exported filenames
|
||||||
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
||||||
if jit:
|
if jit:
|
||||||
f[0] = export_torchscript(model, im, file, optimize)
|
f[0], _ = export_torchscript(model, im, file, optimize)
|
||||||
if engine: # TensorRT required before ONNX
|
if engine: # TensorRT required before ONNX
|
||||||
f[1] = export_engine(model, im, file, train, half, dynamic, simplify, workspace, verbose)
|
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
||||||
if onnx or xml: # OpenVINO requires ONNX
|
if onnx or xml: # OpenVINO requires ONNX
|
||||||
f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
|
f[2], _ = export_onnx(model, im, file, opset, train, dynamic, simplify)
|
||||||
if xml: # OpenVINO
|
if xml: # OpenVINO
|
||||||
f[3] = export_openvino(model, file, half)
|
f[3], _ = export_openvino(model, file, half)
|
||||||
if coreml:
|
if coreml:
|
||||||
_, f[4] = export_coreml(model, im, file, int8, half)
|
f[4], _ = export_coreml(model, im, file, int8, half)
|
||||||
|
|
||||||
# TensorFlow Exports
|
# TensorFlow Exports
|
||||||
if any((saved_model, pb, tflite, edgetpu, tfjs)):
|
if any((saved_model, pb, tflite, edgetpu, tfjs)):
|
||||||
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
|
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
|
||||||
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
|
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
|
||||||
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
||||||
model, f[5] = export_saved_model(model.cpu(),
|
f[5], model = export_saved_model(model.cpu(),
|
||||||
im,
|
im,
|
||||||
file,
|
file,
|
||||||
dynamic,
|
dynamic,
|
||||||
|
@ -551,19 +530,19 @@ def run(
|
||||||
conf_thres=conf_thres,
|
conf_thres=conf_thres,
|
||||||
keras=keras)
|
keras=keras)
|
||||||
if pb or tfjs: # pb prerequisite to tfjs
|
if pb or tfjs: # pb prerequisite to tfjs
|
||||||
f[6] = export_pb(model, file)
|
f[6], _ = export_pb(model, file)
|
||||||
if tflite or edgetpu:
|
if tflite or edgetpu:
|
||||||
f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
f[7], _ = export_tflite(model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
||||||
if edgetpu:
|
if edgetpu:
|
||||||
f[8] = export_edgetpu(file)
|
f[8], _ = export_edgetpu(file)
|
||||||
if tfjs:
|
if tfjs:
|
||||||
f[9] = export_tfjs(file)
|
f[9], _ = export_tfjs(file)
|
||||||
|
|
||||||
# Finish
|
# Finish
|
||||||
f = [str(x) for x in f if x] # filter out '' and None
|
f = [str(x) for x in f if x] # filter out '' and None
|
||||||
if any(f):
|
if any(f):
|
||||||
h = '--half' if half else '' # --half FP16 inference arg
|
h = '--half' if half else '' # --half FP16 inference arg
|
||||||
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
||||||
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||||||
f"\nDetect: python detect.py --weights {f[-1]} {h}"
|
f"\nDetect: python detect.py --weights {f[-1]} {h}"
|
||||||
f"\nValidate: python val.py --weights {f[-1]} {h}"
|
f"\nValidate: python val.py --weights {f[-1]} {h}"
|
||||||
|
|
|
@ -148,6 +148,7 @@ class Profile(contextlib.ContextDecorator):
|
||||||
|
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
self.start = self.time()
|
self.start = self.time()
|
||||||
|
return self
|
||||||
|
|
||||||
def __exit__(self, type, value, traceback):
|
def __exit__(self, type, value, traceback):
|
||||||
self.dt = self.time() - self.start # delta-time
|
self.dt = self.time() - self.start # delta-time
|
||||||
|
@ -220,10 +221,10 @@ def methods(instance):
|
||||||
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
|
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
|
||||||
|
|
||||||
|
|
||||||
def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
|
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
|
||||||
# Print function arguments (optional args dict)
|
# Print function arguments (optional args dict)
|
||||||
x = inspect.currentframe().f_back # previous frame
|
x = inspect.currentframe().f_back # previous frame
|
||||||
file, _, fcn, _, _ = inspect.getframeinfo(x)
|
file, _, func, _, _ = inspect.getframeinfo(x)
|
||||||
if args is None: # get args automatically
|
if args is None: # get args automatically
|
||||||
args, _, _, frm = inspect.getargvalues(x)
|
args, _, _, frm = inspect.getargvalues(x)
|
||||||
args = {k: v for k, v in frm.items() if k in args}
|
args = {k: v for k, v in frm.items() if k in args}
|
||||||
|
@ -231,7 +232,7 @@ def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
|
||||||
file = Path(file).resolve().relative_to(ROOT).with_suffix('')
|
file = Path(file).resolve().relative_to(ROOT).with_suffix('')
|
||||||
except ValueError:
|
except ValueError:
|
||||||
file = Path(file).stem
|
file = Path(file).stem
|
||||||
s = (f'{file}: ' if show_file else '') + (f'{fcn}: ' if show_fcn else '')
|
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
|
||||||
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
||||||
|
|
||||||
|
|
||||||
|
@ -255,7 +256,13 @@ def init_seeds(seed=0, deterministic=False):
|
||||||
|
|
||||||
def intersect_dicts(da, db, exclude=()):
|
def intersect_dicts(da, db, exclude=()):
|
||||||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||||
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
|
||||||
|
|
||||||
|
|
||||||
|
def get_default_args(func):
|
||||||
|
# Get func() default arguments
|
||||||
|
signature = inspect.signature(func)
|
||||||
|
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
|
||||||
|
|
||||||
|
|
||||||
def get_latest_run(search_dir='.'):
|
def get_latest_run(search_dir='.'):
|
||||||
|
|
Loading…
Reference in New Issue