mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Update datasets.py
This commit is contained in:
parent
901243c780
commit
d3f9bf2bb7
@ -62,26 +62,25 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
|
||||
|
||||
batch_size = min(batch_size, len(dataset))
|
||||
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
||||
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
||||
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
||||
dataloader = InfiniteDataLoader(dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=nw,
|
||||
sampler=train_sampler,
|
||||
sampler=sampler,
|
||||
pin_memory=True,
|
||||
collate_fn=LoadImagesAndLabels.collate_fn)
|
||||
return dataloader, dataset
|
||||
|
||||
|
||||
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
||||
'''
|
||||
Dataloader that reuses workers.
|
||||
""" Dataloader that reuses workers.
|
||||
|
||||
Uses same syntax as vanilla DataLoader.
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
||||
object.__setattr__(self, 'batch_sampler', self._RepeatSampler(self.batch_sampler))
|
||||
self.iterator = super().__iter__()
|
||||
|
||||
def __len__(self):
|
||||
@ -91,14 +90,12 @@ class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
||||
for i in range(len(self)):
|
||||
yield next(self.iterator)
|
||||
|
||||
|
||||
class _RepeatSampler(object):
|
||||
'''
|
||||
Sampler that repeats forever.
|
||||
""" Sampler that repeats forever.
|
||||
|
||||
Args:
|
||||
sampler (Sampler)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, sampler):
|
||||
self.sampler = sampler
|
||||
@ -684,14 +681,10 @@ def load_mosaic(self, index):
|
||||
# Concat/clip labels
|
||||
if len(labels4):
|
||||
labels4 = np.concatenate(labels4, 0)
|
||||
# np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop
|
||||
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine
|
||||
|
||||
# Replicate
|
||||
# img4, labels4 = replicate(img4, labels4)
|
||||
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
|
||||
# img4, labels4 = replicate(img4, labels4) # replicate
|
||||
|
||||
# Augment
|
||||
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
|
||||
img4, labels4 = random_perspective(img4, labels4,
|
||||
degrees=self.hyp['degrees'],
|
||||
translate=self.hyp['translate'],
|
||||
|
Loading…
x
Reference in New Issue
Block a user