parent
ec7a926163
commit
d5b6416c87
23
detect.py
23
detect.py
|
@ -1,10 +1,19 @@
|
|||
import argparse
|
||||
import os
|
||||
import platform
|
||||
import shutil
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
from numpy import random
|
||||
|
||||
from models.experimental import *
|
||||
from utils.datasets import *
|
||||
from utils.utils import *
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import LoadStreams, LoadImages
|
||||
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box
|
||||
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||
|
||||
|
||||
def detect(save_img=False):
|
||||
|
@ -13,7 +22,7 @@ def detect(save_img=False):
|
|||
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
||||
|
||||
# Initialize
|
||||
device = torch_utils.select_device(opt.device)
|
||||
device = select_device(opt.device)
|
||||
if os.path.exists(out):
|
||||
shutil.rmtree(out) # delete output folder
|
||||
os.makedirs(out) # make new output folder
|
||||
|
@ -28,7 +37,7 @@ def detect(save_img=False):
|
|||
# Second-stage classifier
|
||||
classify = False
|
||||
if classify:
|
||||
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
|
||||
modelc = load_classifier(name='resnet101', n=2) # initialize
|
||||
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
|
||||
modelc.to(device).eval()
|
||||
|
||||
|
@ -58,12 +67,12 @@ def detect(save_img=False):
|
|||
img = img.unsqueeze(0)
|
||||
|
||||
# Inference
|
||||
t1 = torch_utils.time_synchronized()
|
||||
t1 = time_synchronized()
|
||||
pred = model(img, augment=opt.augment)[0]
|
||||
|
||||
# Apply NMS
|
||||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
||||
t2 = torch_utils.time_synchronized()
|
||||
t2 = time_synchronized()
|
||||
|
||||
# Apply Classifier
|
||||
if classify:
|
||||
|
|
|
@ -6,13 +6,12 @@ Usage:
|
|||
"""
|
||||
|
||||
dependencies = ['torch', 'yaml']
|
||||
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from models.yolo import Model
|
||||
from utils import google_utils
|
||||
from utils.google_utils import attempt_download
|
||||
|
||||
|
||||
def create(name, pretrained, channels, classes):
|
||||
|
@ -32,7 +31,7 @@ def create(name, pretrained, channels, classes):
|
|||
model = Model(config, channels, classes)
|
||||
if pretrained:
|
||||
ckpt = '%s.pt' % name # checkpoint filename
|
||||
google_utils.attempt_download(ckpt) # download if not found locally
|
||||
attempt_download(ckpt) # download if not found locally
|
||||
state_dict = torch.load(ckpt, map_location=torch.device('cpu'))['model'].float().state_dict() # to FP32
|
||||
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
|
||||
model.load_state_dict(state_dict, strict=False) # load
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
# This file contains modules common to various models
|
||||
import math
|
||||
|
||||
from utils.utils import *
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def autopad(k, p=None): # kernel, padding
|
||||
|
|
|
@ -1,7 +1,11 @@
|
|||
# This file contains experimental modules
|
||||
|
||||
from models.common import *
|
||||
from utils import google_utils
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.common import Conv, DWConv
|
||||
from utils.google_utils import attempt_download
|
||||
|
||||
|
||||
class CrossConv(nn.Module):
|
||||
|
@ -129,7 +133,7 @@ def attempt_load(weights, map_location=None):
|
|||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||
model = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
google_utils.attempt_download(w)
|
||||
attempt_download(w)
|
||||
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
|
||||
|
||||
if len(model) == 1:
|
||||
|
|
|
@ -6,8 +6,9 @@ Usage:
|
|||
|
||||
import argparse
|
||||
|
||||
from models.common import *
|
||||
from utils import google_utils
|
||||
import torch
|
||||
|
||||
from utils.google_utils import attempt_download
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@ -22,7 +23,7 @@ if __name__ == '__main__':
|
|||
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
|
||||
|
||||
# Load PyTorch model
|
||||
google_utils.attempt_download(opt.weights)
|
||||
attempt_download(opt.weights)
|
||||
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
|
||||
model.eval()
|
||||
model.model[-1].export = True # set Detect() layer export=True
|
||||
|
|
|
@ -1,7 +1,16 @@
|
|||
import argparse
|
||||
import math
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
from models.experimental import *
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat
|
||||
from models.experimental import MixConv2d, CrossConv, C3
|
||||
from utils.general import check_anchor_order, make_divisible, check_file
|
||||
from utils.torch_utils import (
|
||||
time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device)
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
|
@ -75,7 +84,7 @@ class Model(nn.Module):
|
|||
# print('Strides: %s' % m.stride.tolist())
|
||||
|
||||
# Init weights, biases
|
||||
torch_utils.initialize_weights(self)
|
||||
initialize_weights(self)
|
||||
self.info()
|
||||
print('')
|
||||
|
||||
|
@ -86,7 +95,7 @@ class Model(nn.Module):
|
|||
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||||
y = [] # outputs
|
||||
for si, fi in zip(s, f):
|
||||
xi = torch_utils.scale_img(x.flip(fi) if fi else x, si)
|
||||
xi = scale_img(x.flip(fi) if fi else x, si)
|
||||
yi = self.forward_once(xi)[0] # forward
|
||||
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
||||
yi[..., :4] /= si # de-scale
|
||||
|
@ -111,10 +120,10 @@ class Model(nn.Module):
|
|||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
|
||||
except:
|
||||
o = 0
|
||||
t = torch_utils.time_synchronized()
|
||||
t = time_synchronized()
|
||||
for _ in range(10):
|
||||
_ = m(x)
|
||||
dt.append((torch_utils.time_synchronized() - t) * 100)
|
||||
dt.append((time_synchronized() - t) * 100)
|
||||
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
||||
|
||||
x = m(x) # run
|
||||
|
@ -149,14 +158,14 @@ class Model(nn.Module):
|
|||
for m in self.model.modules():
|
||||
if type(m) is Conv:
|
||||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
|
||||
m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
m.bn = None # remove batchnorm
|
||||
m.forward = m.fuseforward # update forward
|
||||
self.info()
|
||||
return self
|
||||
|
||||
def info(self): # print model information
|
||||
torch_utils.model_info(self)
|
||||
model_info(self)
|
||||
|
||||
|
||||
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||
|
@ -228,7 +237,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
opt = parser.parse_args()
|
||||
opt.cfg = check_file(opt.cfg) # check file
|
||||
device = torch_utils.select_device(opt.device)
|
||||
device = select_device(opt.device)
|
||||
|
||||
# Create model
|
||||
model = Model(opt.cfg).to(device)
|
||||
|
|
27
test.py
27
test.py
|
@ -1,8 +1,21 @@
|
|||
import argparse
|
||||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
from models.experimental import *
|
||||
from utils.datasets import *
|
||||
import numpy as np
|
||||
import torch
|
||||
import yaml
|
||||
from tqdm import tqdm
|
||||
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import (
|
||||
coco80_to_coco91_class, check_file, check_img_size, compute_loss, non_max_suppression,
|
||||
scale_coords, xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class)
|
||||
from utils.torch_utils import select_device, time_synchronized
|
||||
|
||||
|
||||
def test(data,
|
||||
|
@ -26,7 +39,7 @@ def test(data,
|
|||
device = next(model.parameters()).device # get model device
|
||||
|
||||
else: # called directly
|
||||
device = torch_utils.select_device(opt.device, batch_size=batch_size)
|
||||
device = select_device(opt.device, batch_size=batch_size)
|
||||
merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels
|
||||
if save_txt:
|
||||
out = Path('inference/output')
|
||||
|
@ -85,18 +98,18 @@ def test(data,
|
|||
# Disable gradients
|
||||
with torch.no_grad():
|
||||
# Run model
|
||||
t = torch_utils.time_synchronized()
|
||||
t = time_synchronized()
|
||||
inf_out, train_out = model(img, augment=augment) # inference and training outputs
|
||||
t0 += torch_utils.time_synchronized() - t
|
||||
t0 += time_synchronized() - t
|
||||
|
||||
# Compute loss
|
||||
if training: # if model has loss hyperparameters
|
||||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls
|
||||
|
||||
# Run NMS
|
||||
t = torch_utils.time_synchronized()
|
||||
t = time_synchronized()
|
||||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
|
||||
t1 += torch_utils.time_synchronized() - t
|
||||
t1 += time_synchronized() - t
|
||||
|
||||
# Statistics per image
|
||||
for si, pred in enumerate(output):
|
||||
|
|
25
train.py
25
train.py
|
@ -1,19 +1,32 @@
|
|||
import argparse
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
from random import random
|
||||
|
||||
import numpy as np
|
||||
import torch.distributed as dist
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import torch.optim.lr_scheduler as lr_scheduler
|
||||
import torch.utils.data
|
||||
import yaml
|
||||
from torch.cuda import amp
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
import test # import test.py to get mAP after each epoch
|
||||
from models.yolo import Model
|
||||
from utils import google_utils
|
||||
from utils.datasets import *
|
||||
from utils.utils import *
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import (
|
||||
check_img_size, torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors,
|
||||
labels_to_image_weights, compute_loss, plot_images, fitness, strip_optimizer, plot_results,
|
||||
get_latest_run, check_git_status, check_file, increment_dir, print_mutation)
|
||||
from utils.google_utils import attempt_download
|
||||
from utils.torch_utils import init_seeds, ModelEMA, select_device
|
||||
|
||||
# Hyperparameters
|
||||
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||
|
@ -119,7 +132,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
|
||||
# Load Model
|
||||
with torch_distributed_zero_first(rank):
|
||||
google_utils.attempt_download(weights)
|
||||
attempt_download(weights)
|
||||
start_epoch, best_fitness = 0, 0.0
|
||||
if weights.endswith('.pt'): # pytorch format
|
||||
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
||||
|
@ -167,7 +180,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
print('Using SyncBatchNorm()')
|
||||
|
||||
# Exponential moving average
|
||||
ema = torch_utils.ModelEMA(model) if rank in [-1, 0] else None
|
||||
ema = ModelEMA(model) if rank in [-1, 0] else None
|
||||
|
||||
# DDP mode
|
||||
if cuda and rank != -1:
|
||||
|
@ -438,7 +451,7 @@ if __name__ == '__main__':
|
|||
with open(opt.hyp) as f:
|
||||
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps
|
||||
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
||||
device = torch_utils.select_device(opt.device, batch_size=opt.batch_size)
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
opt.total_batch_size = opt.batch_size
|
||||
opt.world_size = 1
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ from PIL import Image, ExifTags
|
|||
from torch.utils.data import Dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.utils import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
|
||||
from utils.general import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
|
||||
|
||||
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
||||
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
|
||||
|
|
|
@ -18,10 +18,11 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torchvision
|
||||
import yaml
|
||||
from scipy.cluster.vq import kmeans
|
||||
from scipy.signal import butter, filtfilt
|
||||
from tqdm import tqdm
|
||||
|
||||
from . import torch_utils # torch_utils, google_utils
|
||||
from utils.torch_utils import init_seeds, is_parallel
|
||||
|
||||
# Set printoptions
|
||||
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||||
|
@ -47,7 +48,7 @@ def torch_distributed_zero_first(local_rank: int):
|
|||
def init_seeds(seed=0):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch_utils.init_seeds(seed=seed)
|
||||
init_seeds(seed=seed)
|
||||
|
||||
|
||||
def get_latest_run(search_dir='./runs'):
|
||||
|
@ -505,7 +506,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
|||
|
||||
def build_targets(p, targets, model):
|
||||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||
det = model.module.model[-1] if torch_utils.is_parallel(model) else model.model[-1] # Detect() module
|
||||
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
||||
tcls, tbox, indices, anch = [], [], [], []
|
||||
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||
|
@ -779,7 +780,6 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
|
|||
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
||||
|
||||
# Kmeans calculation
|
||||
from scipy.cluster.vq import kmeans
|
||||
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
|
||||
s = wh.std(0) # sigmas for whitening
|
||||
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
Loading…
Reference in New Issue