Add EdgeTPU support (#3630)
* Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Add TensorFlow and TFLite Detection * Add --tfl-detect for TFLite Detection * Add int8 quantized TFLite inference in detect.py * Add --edgetpu for Edge TPU detection * Fix --img-size to add rectangle TensorFlow and TFLite input * Add --no-tf-nms to detect objects using models combined with TensorFlow NMS * Fix --img-size list type input * Update README.md * Add Android project for TFLite inference * Upgrade TensorFlow v2.3.1 -> v2.4.0 * Disable normalization of xywh * Rewrite names init in detect.py * Change input resolution 640 -> 320 on Android * Disable NNAPI * Update README.me --img 640 -> 320 * Update README.me for Edge TPU * Update README.md * Fix reshape dim to support dynamic batching * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Remove android directory * Update README.md * Update README.md * Add multiple OS support for EdgeTPU detection * Fix export and detect * Export 3 YOLO heads with Edge TPU models * Remove xywh denormalization with Edge TPU models in detect.py * Fix saved_model and pb detect error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix pre-commit.ci failure * Add edgetpu in export.py docstring * Fix Edge TPU model detection exported by TF 2.7 * Add class names for TF/TFLite in DetectMultibackend * Fix assignment with nl in TFLite Detection * Add check when getting Edge TPU compiler version * Add UTF-8 encoding in opening --data file for Windows * Remove redundant TensorFlow import * Add Edge TPU in export.py's docstring * Add the detect layer in Edge TPU model conversion * Default `dnn=False` * Cleanup data.yaml loading * Update detect.py * Update val.py * Comments and generalize data.yaml names Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: unknown <fangjiacong@ut.cn> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/6152/head
parent
affa284352
commit
d95978a562
|
@ -38,6 +38,7 @@ from utils.torch_utils import select_device, time_sync
|
|||
@torch.no_grad()
|
||||
def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
|
||||
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
|
||||
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||
imgsz=(640, 640), # inference size (height, width)
|
||||
conf_thres=0.25, # confidence threshold
|
||||
iou_thres=0.45, # NMS IOU threshold
|
||||
|
@ -76,7 +77,7 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
|
|||
|
||||
# Load model
|
||||
device = select_device(device)
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn)
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
|
||||
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
|
||||
|
@ -204,6 +205,7 @@ def parse_opt():
|
|||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
|
||||
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
|
||||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
||||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
||||
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
||||
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
||||
|
|
29
export.py
29
export.py
|
@ -248,6 +248,24 @@ def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('Te
|
|||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')):
|
||||
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
||||
try:
|
||||
cmd = 'edgetpu_compiler --version'
|
||||
out = subprocess.run(cmd, shell=True, capture_output=True, check=True)
|
||||
ver = out.stdout.decode().split()[-1]
|
||||
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
||||
f = str(file).replace('.pt', '-int8_edgetpu.tflite')
|
||||
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
||||
|
||||
cmd = f"edgetpu_compiler -s {f_tfl}"
|
||||
subprocess.run(cmd, shell=True, check=True)
|
||||
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
||||
# YOLOv5 TensorFlow.js export
|
||||
try:
|
||||
|
@ -285,6 +303,7 @@ def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
|||
|
||||
|
||||
def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
||||
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
||||
try:
|
||||
check_requirements(('tensorrt',))
|
||||
import tensorrt as trt
|
||||
|
@ -356,7 +375,7 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
|||
):
|
||||
t = time.time()
|
||||
include = [x.lower() for x in include]
|
||||
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
|
||||
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports
|
||||
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)
|
||||
|
||||
# Checks
|
||||
|
@ -405,15 +424,17 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
|||
|
||||
# TensorFlow Exports
|
||||
if any(tf_exports):
|
||||
pb, tflite, tfjs = tf_exports[1:]
|
||||
pb, tflite, edgetpu, tfjs = tf_exports[1:]
|
||||
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
||||
model = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
|
||||
agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all,
|
||||
conf_thres=conf_thres, iou_thres=iou_thres) # keras model
|
||||
if pb or tfjs: # pb prerequisite to tfjs
|
||||
export_pb(model, im, file)
|
||||
if tflite:
|
||||
export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
|
||||
if tflite or edgetpu:
|
||||
export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
|
||||
if edgetpu:
|
||||
export_edgetpu(model, im, file)
|
||||
if tfjs:
|
||||
export_tfjs(model, im, file)
|
||||
|
||||
|
|
|
@ -17,6 +17,7 @@ import pandas as pd
|
|||
import requests
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import yaml
|
||||
from PIL import Image
|
||||
from torch.cuda import amp
|
||||
|
||||
|
@ -276,7 +277,7 @@ class Concat(nn.Module):
|
|||
|
||||
class DetectMultiBackend(nn.Module):
|
||||
# YOLOv5 MultiBackend class for python inference on various backends
|
||||
def __init__(self, weights='yolov5s.pt', device=None, dnn=False):
|
||||
def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None):
|
||||
# Usage:
|
||||
# PyTorch: weights = *.pt
|
||||
# TorchScript: *.torchscript
|
||||
|
@ -284,6 +285,7 @@ class DetectMultiBackend(nn.Module):
|
|||
# TensorFlow: *_saved_model
|
||||
# TensorFlow: *.pb
|
||||
# TensorFlow Lite: *.tflite
|
||||
# TensorFlow Edge TPU: *_edgetpu.tflite
|
||||
# ONNX Runtime: *.onnx
|
||||
# OpenCV DNN: *.onnx with dnn=True
|
||||
# TensorRT: *.engine
|
||||
|
@ -297,6 +299,9 @@ class DetectMultiBackend(nn.Module):
|
|||
pt, jit, onnx, engine, tflite, pb, saved_model, coreml = (suffix == x for x in suffixes) # backend booleans
|
||||
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
|
||||
w = attempt_download(w) # download if not local
|
||||
if data: # data.yaml path (optional)
|
||||
with open(data, errors='ignore') as f:
|
||||
names = yaml.safe_load(f)['names'] # class names
|
||||
|
||||
if jit: # TorchScript
|
||||
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
||||
|
@ -343,7 +348,7 @@ class DetectMultiBackend(nn.Module):
|
|||
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||||
context = model.create_execution_context()
|
||||
batch_size = bindings['images'].shape[0]
|
||||
else: # TensorFlow model (TFLite, pb, saved_model)
|
||||
else: # TensorFlow (TFLite, pb, saved_model)
|
||||
if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||||
LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...')
|
||||
import tensorflow as tf
|
||||
|
@ -425,6 +430,7 @@ class DetectMultiBackend(nn.Module):
|
|||
y[..., 1] *= h # y
|
||||
y[..., 2] *= w # w
|
||||
y[..., 3] *= h # h
|
||||
|
||||
y = torch.tensor(y) if isinstance(y, np.ndarray) else y
|
||||
return (y, []) if val else y
|
||||
|
||||
|
|
2
val.py
2
val.py
|
@ -124,7 +124,7 @@ def run(data,
|
|||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||
|
||||
# Load model
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn)
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
|
||||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
|
||||
|
|
Loading…
Reference in New Issue