W&B: track batch size after autobatch (#6039)

* track batch size after autobatch

* remove redundant import

* Update __init__.py

* Update __init__.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/5489/head
Ayush Chaurasia 2021-12-23 05:23:50 -08:00 committed by GitHub
parent c72270c076
commit db6ec66a60
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 8 additions and 1 deletions

View File

@ -138,6 +138,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
# Batch size
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
batch_size = check_train_batch_size(model, imgsz)
loggers.on_params_update({"batch_size": batch_size})
# Optimizer
nbs = 64 # nominal batch size

View File

@ -32,7 +32,7 @@ class Callbacks:
'on_fit_epoch_end': [], # fit = train + val
'on_model_save': [],
'on_train_end': [],
'on_params_update': [],
'teardown': [],
}

View File

@ -157,3 +157,9 @@ class Loggers():
else:
self.wandb.finish_run()
self.wandb = WandbLogger(self.opt)
def on_params_update(self, params):
# Update hyperparams or configs of the experiment
# params: A dict containing {param: value} pairs
if self.wandb:
self.wandb.wandb_run.config.update(params, allow_val_change=True)