Use `export_formats()` in export.py (#6705)
* Use `export_formats()` in export.py * list fixpull/6618/head^2
parent
a297efc383
commit
de9c25b35e
22
export.py
22
export.py
|
@ -433,9 +433,12 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
||||||
conf_thres=0.25 # TF.js NMS: confidence threshold
|
conf_thres=0.25 # TF.js NMS: confidence threshold
|
||||||
):
|
):
|
||||||
t = time.time()
|
t = time.time()
|
||||||
include = [x.lower() for x in include]
|
include = [x.lower() for x in include] # to lowercase
|
||||||
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports
|
formats = tuple(export_formats()['Argument'][1:]) # --include arguments
|
||||||
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)
|
flags = [x in include for x in formats]
|
||||||
|
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {formats}'
|
||||||
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans
|
||||||
|
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
||||||
|
|
||||||
# Load PyTorch model
|
# Load PyTorch model
|
||||||
device = select_device(device)
|
device = select_device(device)
|
||||||
|
@ -475,20 +478,19 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
||||||
# Exports
|
# Exports
|
||||||
f = [''] * 10 # exported filenames
|
f = [''] * 10 # exported filenames
|
||||||
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
||||||
if 'torchscript' in include:
|
if jit:
|
||||||
f[0] = export_torchscript(model, im, file, optimize)
|
f[0] = export_torchscript(model, im, file, optimize)
|
||||||
if 'engine' in include: # TensorRT required before ONNX
|
if engine: # TensorRT required before ONNX
|
||||||
f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose)
|
f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose)
|
||||||
if ('onnx' in include) or ('openvino' in include): # OpenVINO requires ONNX
|
if onnx or xml: # OpenVINO requires ONNX
|
||||||
f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
|
f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
|
||||||
if 'openvino' in include:
|
if xml: # OpenVINO
|
||||||
f[3] = export_openvino(model, im, file)
|
f[3] = export_openvino(model, im, file)
|
||||||
if 'coreml' in include:
|
if coreml:
|
||||||
_, f[4] = export_coreml(model, im, file)
|
_, f[4] = export_coreml(model, im, file)
|
||||||
|
|
||||||
# TensorFlow Exports
|
# TensorFlow Exports
|
||||||
if any(tf_exports):
|
if any((saved_model, pb, tflite, edgetpu, tfjs)):
|
||||||
pb, tflite, edgetpu, tfjs = tf_exports[1:]
|
|
||||||
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
|
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
|
||||||
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
|
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
|
||||||
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
||||||
|
|
Loading…
Reference in New Issue