onnx_export.py
parent
8cab44e78b
commit
df7988d8d0
|
@ -10,7 +10,7 @@ jobs:
|
||||||
with:
|
with:
|
||||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
pr-message: 'Hello @${{ github.actor }}, thank you for submitting a PR! We will respond as soon as possible.'
|
pr-message: 'Hello @${{ github.actor }}, thank you for submitting a PR! We will respond as soon as possible.'
|
||||||
issue-message: >
|
issue-message: |
|
||||||
Hello @${{ github.actor }}, thank you for your interest in our work! Please visit our [Custom Training Tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) to get started, and see our [Google Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb), [Docker Image](https://hub.docker.com/r/ultralytics/yolov5), and [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) for example environments.
|
Hello @${{ github.actor }}, thank you for your interest in our work! Please visit our [Custom Training Tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) to get started, and see our [Google Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb), [Docker Image](https://hub.docker.com/r/ultralytics/yolov5), and [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) for example environments.
|
||||||
|
|
||||||
If this is a bug report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
|
If this is a bug report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
|
||||||
|
|
|
@ -108,4 +108,4 @@ To access an up-to-date working environment (with all dependencies including CUD
|
||||||
|
|
||||||
## Contact
|
## Contact
|
||||||
|
|
||||||
**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit us at https://www.ultralytics.com.
|
**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
|
||||||
|
|
20
detect.py
20
detect.py
|
@ -7,12 +7,12 @@ ONNX_EXPORT = False
|
||||||
|
|
||||||
|
|
||||||
def detect(save_img=False):
|
def detect(save_img=False):
|
||||||
imgsz = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
|
out, source, weights, half, view_img, save_txt, imgsz = \
|
||||||
out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
|
opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt, opt.img_size
|
||||||
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
||||||
|
|
||||||
# Initialize
|
# Initialize
|
||||||
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
|
device = torch_utils.select_device(opt.device)
|
||||||
if os.path.exists(out):
|
if os.path.exists(out):
|
||||||
shutil.rmtree(out) # delete output folder
|
shutil.rmtree(out) # delete output folder
|
||||||
os.makedirs(out) # make new output folder
|
os.makedirs(out) # make new output folder
|
||||||
|
@ -35,20 +35,6 @@ def detect(save_img=False):
|
||||||
# Fuse Conv2d + BatchNorm2d layers
|
# Fuse Conv2d + BatchNorm2d layers
|
||||||
# model.fuse()
|
# model.fuse()
|
||||||
|
|
||||||
# Export mode
|
|
||||||
if ONNX_EXPORT:
|
|
||||||
model.fuse()
|
|
||||||
img = torch.zeros((1, 3) + imgsz) # (1, 3, 320, 192)
|
|
||||||
f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename
|
|
||||||
torch.onnx.export(model, img, f, verbose=False, opset_version=11)
|
|
||||||
|
|
||||||
# Validate exported model
|
|
||||||
import onnx
|
|
||||||
model = onnx.load(f) # Load the ONNX model
|
|
||||||
onnx.checker.check_model(model) # Check that the IR is well formed
|
|
||||||
print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
|
|
||||||
return
|
|
||||||
|
|
||||||
# Half precision
|
# Half precision
|
||||||
half = half and device.type != 'cpu' # half precision only supported on CUDA
|
half = half and device.type != 'cpu' # half precision only supported on CUDA
|
||||||
if half:
|
if half:
|
||||||
|
|
|
@ -0,0 +1,32 @@
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import onnx
|
||||||
|
|
||||||
|
from models.common import *
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', default='../weights/yolov5s.pt', help='model path RELATIVE to ./models/')
|
||||||
|
parser.add_argument('--img-size', default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--batch-size', default=1, help='batch size')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
f = opt.weights.replace('.pt', '.onnx') # onnx filename
|
||||||
|
img = torch.zeros((opt.batch_size, 3, opt.img_size, opt.img_size)) # image size, (1, 3, 320, 192) iDetection
|
||||||
|
|
||||||
|
# Load pytorch model
|
||||||
|
google_utils.attempt_download(opt.weights)
|
||||||
|
model = torch.load(opt.weights)['model']
|
||||||
|
model.eval()
|
||||||
|
# model.fuse() # optionally fuse Conv2d + BatchNorm2d layers TODO
|
||||||
|
|
||||||
|
# Export to onnx
|
||||||
|
model.model[-1].export = True # set Detect() layer export=True
|
||||||
|
torch.onnx.export(model, img, f, verbose=False, opset_version=11)
|
||||||
|
|
||||||
|
# Check onnx model
|
||||||
|
model = onnx.load(f) # load onnx model
|
||||||
|
onnx.checker.check_model(model) # check onnx model
|
||||||
|
print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph
|
||||||
|
print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)
|
Loading…
Reference in New Issue