mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
intersect_dicts()
in hubconf.py fix (#5542)
This commit is contained in:
parent
fa2344cdd8
commit
e189fa15ea
@ -30,7 +30,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
from utils.downloads import attempt_download
|
||||
from utils.general import check_requirements, set_logging
|
||||
from utils.general import check_requirements, intersect_dicts, set_logging
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
file = Path(__file__).resolve()
|
||||
@ -49,9 +49,8 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
|
||||
model = Model(cfg, channels, classes) # create model
|
||||
if pretrained:
|
||||
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
||||
msd = model.state_dict() # model state_dict
|
||||
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
||||
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
|
||||
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
|
||||
model.load_state_dict(csd, strict=False) # load
|
||||
if len(ckpt['model'].names) == classes:
|
||||
model.names = ckpt['model'].names # set class names attribute
|
||||
|
7
train.py
7
train.py
@ -43,15 +43,14 @@ from utils.datasets import create_dataloader
|
||||
from utils.downloads import attempt_download
|
||||
from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,
|
||||
check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
|
||||
labels_to_class_weights, labels_to_image_weights, methods, one_cycle, print_args,
|
||||
print_mutation, strip_optimizer)
|
||||
intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle,
|
||||
print_args, print_mutation, strip_optimizer)
|
||||
from utils.loggers import Loggers
|
||||
from utils.loggers.wandb.wandb_utils import check_wandb_resume
|
||||
from utils.loss import ComputeLoss
|
||||
from utils.metrics import fitness
|
||||
from utils.plots import plot_evolve, plot_labels
|
||||
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, intersect_dicts, select_device,
|
||||
torch_distributed_zero_first)
|
||||
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
|
||||
|
||||
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
|
@ -125,6 +125,11 @@ def init_seeds(seed=0):
|
||||
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
|
||||
|
||||
|
||||
def intersect_dicts(da, db, exclude=()):
|
||||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
||||
|
||||
|
||||
def get_latest_run(search_dir='.'):
|
||||
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
||||
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
||||
|
@ -153,11 +153,6 @@ def de_parallel(model):
|
||||
return model.module if is_parallel(model) else model
|
||||
|
||||
|
||||
def intersect_dicts(da, db, exclude=()):
|
||||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
||||
|
||||
|
||||
def initialize_weights(model):
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
|
Loading…
x
Reference in New Issue
Block a user