Add PaddlePaddle export and inference (#9240)

* Add PaddlePaddle Model Export

Test on Yolov5 DockerEnviroment with paddlepaddle-gpu v2.2

Signed-off-by: Katteria <39751846+kisaragychihaya@users.noreply.github.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup Paddle Export

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update common.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update export.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update export.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update export.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update export.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Use PyTorch2Paddle

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Paddle no longer requires ONNX

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update export.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update export.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update benchmarks.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add inference code of PaddlePaddle

Signed-off-by: Katteria <39751846+kisaragychihaya@users.noreply.github.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update common.py

Signed-off-by: Katteria <39751846+kisaragychihaya@users.noreply.github.com>

* Update common.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add paddlepaddle-gpu install if cuda

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update common.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update common.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update common.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

Signed-off-by: Katteria <39751846+kisaragychihaya@users.noreply.github.com>
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/9358/head
Katteria 2022-09-10 17:20:46 +08:00 committed by GitHub
parent 57ef676af2
commit e3e5122f82
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 111 additions and 75 deletions

View File

@ -15,6 +15,7 @@ TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
PaddlePaddle | `paddle` | yolov5s_paddle_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
@ -54,7 +55,6 @@ from pathlib import Path
import pandas as pd
import torch
import yaml
from torch.utils.mobile_optimizer import optimize_for_mobile
FILE = Path(__file__).resolve()
@ -68,7 +68,7 @@ from models.experimental import attempt_load
from models.yolo import ClassificationModel, Detect
from utils.dataloaders import LoadImages
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
check_yaml, colorstr, file_size, get_default_args, print_args, url2file)
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
from utils.torch_utils import select_device, smart_inference_mode
@ -85,7 +85,8 @@ def export_formats():
['TensorFlow GraphDef', 'pb', '.pb', True, True],
['TensorFlow Lite', 'tflite', '.tflite', True, False],
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
['TensorFlow.js', 'tfjs', '_web_model', False, False],]
['TensorFlow.js', 'tfjs', '_web_model', False, False],
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
@ -180,7 +181,7 @@ def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorst
@try_export
def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')):
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
# YOLOv5 OpenVINO export
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie
@ -189,9 +190,23 @@ def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')):
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
subprocess.check_output(cmd.split()) # export
with open(Path(f) / file.with_suffix('.yaml').name, 'w') as g:
yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g) # add metadata.yaml
subprocess.run(cmd.split(), check=True, env=os.environ) # export
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
return f, None
@try_export
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
# YOLOv5 Paddle export
check_requirements(('paddlepaddle', 'x2paddle'))
import x2paddle
from x2paddle.convert import pytorch2paddle
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
f = str(file).replace('.pt', f'_paddle_model{os.sep}')
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
return f, None
@ -464,7 +479,7 @@ def run(
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
flags = [x in include for x in fmts]
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
# Load PyTorch model
@ -497,47 +512,48 @@ def run(
if half and not coreml:
im, model = im.half(), model.half() # to FP16
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
# Exports
f = [''] * 10 # exported filenames
f = [''] * len(fmts) # exported filenames
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
if jit:
if jit: # TorchScript
f[0], _ = export_torchscript(model, im, file, optimize)
if engine: # TensorRT required before ONNX
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
if onnx or xml: # OpenVINO requires ONNX
f[2], _ = export_onnx(model, im, file, opset, train, dynamic, simplify)
if xml: # OpenVINO
f[3], _ = export_openvino(model, file, half)
if coreml:
f[3], _ = export_openvino(file, metadata, half)
if coreml: # CoreML
f[4], _ = export_coreml(model, im, file, int8, half)
# TensorFlow Exports
if any((saved_model, pb, tflite, edgetpu, tfjs)):
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
check_requirements('flatbuffers==1.12') # required before `import tensorflow`
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
f[5], model = export_saved_model(model.cpu(),
im,
file,
dynamic,
tf_nms=nms or agnostic_nms or tfjs,
agnostic_nms=agnostic_nms or tfjs,
topk_per_class=topk_per_class,
topk_all=topk_all,
iou_thres=iou_thres,
conf_thres=conf_thres,
keras=keras)
f[5], s_model = export_saved_model(model.cpu(),
im,
file,
dynamic,
tf_nms=nms or agnostic_nms or tfjs,
agnostic_nms=agnostic_nms or tfjs,
topk_per_class=topk_per_class,
topk_all=topk_all,
iou_thres=iou_thres,
conf_thres=conf_thres,
keras=keras)
if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = export_pb(model, file)
f[6], _ = export_pb(s_model, file)
if tflite or edgetpu:
f[7], _ = export_tflite(model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
if edgetpu:
f[8], _ = export_edgetpu(file)
if tfjs:
f[9], _ = export_tfjs(file)
if paddle: # PaddlePaddle
f[10], _ = export_paddle(model, im, file, metadata)
# Finish
f = [str(x) for x in f if x] # filter out '' and None

View File

@ -320,14 +320,16 @@ class DetectMultiBackend(nn.Module):
# TensorFlow GraphDef: *.pb
# TensorFlow Lite: *.tflite
# TensorFlow Edge TPU: *_edgetpu.tflite
# PaddlePaddle: *_paddle_model
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self._model_type(w) # get backend
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = self._model_type(w) # type
w = attempt_download(w) # download if not local
fp16 &= pt or jit or onnx or engine # FP16
stride = 32 # default stride
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
if pt: # PyTorch
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
@ -351,7 +353,6 @@ class DetectMultiBackend(nn.Module):
net = cv2.dnn.readNetFromONNX(w)
elif onnx: # ONNX Runtime
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
cuda = torch.cuda.is_available() and device.type != 'cpu'
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
import onnxruntime
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
@ -408,48 +409,60 @@ class DetectMultiBackend(nn.Module):
LOGGER.info(f'Loading {w} for CoreML inference...')
import coremltools as ct
model = ct.models.MLModel(w)
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
if saved_model: # SavedModel
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
import tensorflow as tf
keras = False # assume TF1 saved_model
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
import tensorflow as tf
elif saved_model: # TF SavedModel
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
import tensorflow as tf
keras = False # assume TF1 saved_model
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
import tensorflow as tf
def wrap_frozen_graph(gd, inputs, outputs):
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
ge = x.graph.as_graph_element
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
def wrap_frozen_graph(gd, inputs, outputs):
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
ge = x.graph.as_graph_element
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
gd = tf.Graph().as_graph_def() # graph_def
with open(w, 'rb') as f:
gd.ParseFromString(f.read())
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
from tflite_runtime.interpreter import Interpreter, load_delegate
except ImportError:
import tensorflow as tf
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
delegate = {
'Linux': 'libedgetpu.so.1',
'Darwin': 'libedgetpu.1.dylib',
'Windows': 'edgetpu.dll'}[platform.system()]
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
else: # Lite
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
interpreter = Interpreter(model_path=w) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
elif tfjs:
raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
else:
raise NotImplementedError(f'ERROR: {w} is not a supported format')
gd = tf.Graph().as_graph_def() # TF GraphDef
with open(w, 'rb') as f:
gd.ParseFromString(f.read())
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
from tflite_runtime.interpreter import Interpreter, load_delegate
except ImportError:
import tensorflow as tf
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
delegate = {
'Linux': 'libedgetpu.so.1',
'Darwin': 'libedgetpu.1.dylib',
'Windows': 'edgetpu.dll'}[platform.system()]
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
else: # TFLite
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
interpreter = Interpreter(model_path=w) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
elif tfjs: # TF.js
raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
elif paddle: # PaddlePaddle
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
import paddle.inference as pdi
if not Path(w).is_file(): # if not *.pdmodel
w = next(Path(w).rglob('*.pdmodel')) # get *.xml file from *_openvino_model dir
weights = Path(w).with_suffix('.pdiparams')
config = pdi.Config(str(w), str(weights))
if cuda:
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
predictor = pdi.create_predictor(config)
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
else:
raise NotImplementedError(f'ERROR: {w} is not a supported format')
# class names
if 'names' not in locals():
@ -502,6 +515,13 @@ class DetectMultiBackend(nn.Module):
else:
k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
y = y[k] # output
elif self.paddle: # PaddlePaddle
im = im.cpu().numpy().astype("float32")
self.input_handle.copy_from_cpu(im)
self.predictor.run()
output_names = self.predictor.get_output_names()
output_handle = self.predictor.get_output_handle(output_names[0])
y = output_handle.copy_to_cpu()
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.saved_model: # SavedModel
@ -542,13 +562,13 @@ class DetectMultiBackend(nn.Module):
def _model_type(p='path/to/model.pt'):
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
from export import export_formats
suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
check_suffix(p, suffixes) # checks
sf = list(export_formats().Suffix) + ['.xml'] # export suffixes
check_suffix(p, sf) # checks
p = Path(p).name # eliminate trailing separators
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, xml2 = (s in p for s in sf)
xml |= xml2 # *_openvino_model or *.xml
tflite &= not edgetpu # *.tflite
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle
@staticmethod
def _load_metadata(f=Path('path/to/meta.yaml')):

View File

@ -61,7 +61,7 @@ def run(
device = select_device(device)
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
try:
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
assert i not in (9, 10, 11), 'inference not supported' # Edge TPU, TF.js and Paddle are unsupported
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
if 'cpu' in device.type:
assert cpu, 'inference not supported on CPU'