update test.py for FP16 testing during training
parent
8669f4561c
commit
e670a3353b
15
test.py
15
test.py
|
@ -25,7 +25,6 @@ def test(data,
|
|||
if model is None:
|
||||
training = False
|
||||
device = torch_utils.select_device(opt.device, batch_size=batch_size)
|
||||
half = device.type != 'cpu' # half precision only supported on CUDA
|
||||
|
||||
# Remove previous
|
||||
for f in glob.glob('test_batch*.jpg'):
|
||||
|
@ -37,20 +36,19 @@ def test(data,
|
|||
torch_utils.model_info(model)
|
||||
model.fuse()
|
||||
model.to(device)
|
||||
if half:
|
||||
model.half() # to FP16
|
||||
|
||||
# Multi-GPU disabled, incompatible with .half()
|
||||
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
|
||||
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
||||
# model = nn.DataParallel(model)
|
||||
|
||||
else: # called by train.py
|
||||
training = True
|
||||
device = next(model.parameters()).device # get model device
|
||||
# half disabled https://github.com/ultralytics/yolov5/issues/99
|
||||
half = False # device.type != 'cpu' and torch.cuda.device_count() == 1
|
||||
if half:
|
||||
model.half() # to FP16
|
||||
|
||||
# Half
|
||||
half = device.type != 'cpu' and torch.cuda.device_count() == 1 # half precision only supported on single-GPU
|
||||
if half:
|
||||
model.half() # to FP16
|
||||
|
||||
# Configure
|
||||
model.eval()
|
||||
|
@ -237,6 +235,7 @@ def test(data,
|
|||
'See https://github.com/cocodataset/cocoapi/issues/356')
|
||||
|
||||
# Return results
|
||||
model.float() # for training
|
||||
maps = np.zeros(nc) + map
|
||||
for i, c in enumerate(ap_class):
|
||||
maps[c] = ap[i]
|
||||
|
|
Loading…
Reference in New Issue