Evolve in CSV format (#4307)
* Update evolution to CSV format * Update * Update * Update * Update * Update * reset args * reset args * reset args * plot_results() fix * Cleanup * Cleanup2pull/4308/head
parent
4103ce9ad0
commit
e78aeac973
|
@ -8,7 +8,7 @@ coco
|
|||
storage.googleapis.com
|
||||
|
||||
data/samples/*
|
||||
**/results*.txt
|
||||
**/results*.csv
|
||||
*.jpg
|
||||
|
||||
# Neural Network weights -----------------------------------------------------------------------------------------------
|
||||
|
|
|
@ -30,7 +30,6 @@ data/*
|
|||
!data/images/bus.jpg
|
||||
!data/*.sh
|
||||
|
||||
results*.txt
|
||||
results*.csv
|
||||
|
||||
# Datasets -------------------------------------------------------------------------------------------------------------
|
||||
|
|
32
train.py
32
train.py
|
@ -37,7 +37,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_ima
|
|||
check_requirements, print_mutation, set_logging, one_cycle, colorstr, methods
|
||||
from utils.downloads import attempt_download
|
||||
from utils.loss import ComputeLoss
|
||||
from utils.plots import plot_labels, plot_evolution
|
||||
from utils.plots import plot_labels, plot_evolve
|
||||
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
|
||||
from utils.loggers.wandb.wandb_utils import check_wandb_resume
|
||||
from utils.metrics import fitness
|
||||
|
@ -367,7 +367,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||
if fi > best_fitness:
|
||||
best_fitness = fi
|
||||
callbacks.on_fit_epoch_end(mloss, results, lr, epoch, best_fitness, fi)
|
||||
log_vals = list(mloss) + list(results) + lr
|
||||
callbacks.on_fit_epoch_end(log_vals, epoch, best_fitness, fi)
|
||||
|
||||
# Save model
|
||||
if (not nosave) or (final_epoch and not evolve): # if save
|
||||
|
@ -464,7 +465,7 @@ def main(opt):
|
|||
check_requirements(requirements=FILE.parent / 'requirements.txt', exclude=['thop'])
|
||||
|
||||
# Resume
|
||||
if opt.resume and not check_wandb_resume(opt): # resume an interrupted run
|
||||
if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run
|
||||
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
||||
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
||||
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
|
||||
|
@ -474,8 +475,10 @@ def main(opt):
|
|||
else:
|
||||
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
||||
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
||||
opt.name = 'evolve' if opt.evolve else opt.name
|
||||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
||||
if opt.evolve:
|
||||
opt.project = 'runs/evolve'
|
||||
opt.exist_ok = opt.resume
|
||||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
||||
|
||||
# DDP mode
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
|
@ -533,17 +536,17 @@ def main(opt):
|
|||
hyp = yaml.safe_load(f) # load hyps dict
|
||||
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
||||
hyp['anchors'] = 3
|
||||
opt.noval, opt.nosave = True, True # only val/save final epoch
|
||||
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
||||
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||||
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
|
||||
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
|
||||
if opt.bucket:
|
||||
os.system(f'gsutil cp gs://{opt.bucket}/evolve.txt .') # download evolve.txt if exists
|
||||
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists
|
||||
|
||||
for _ in range(opt.evolve): # generations to evolve
|
||||
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
|
||||
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
||||
# Select parent(s)
|
||||
parent = 'single' # parent selection method: 'single' or 'weighted'
|
||||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
|
||||
n = min(5, len(x)) # number of previous results to consider
|
||||
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||||
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
|
||||
|
@ -575,12 +578,13 @@ def main(opt):
|
|||
results = train(hyp.copy(), opt, device)
|
||||
|
||||
# Write mutation results
|
||||
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
||||
print_mutation(results, hyp.copy(), save_dir, opt.bucket)
|
||||
|
||||
# Plot results
|
||||
plot_evolution(yaml_file)
|
||||
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
|
||||
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
|
||||
plot_evolve(evolve_csv)
|
||||
print(f'Hyperparameter evolution finished\n'
|
||||
f"Results saved to {colorstr('bold', save_dir)}"
|
||||
f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')
|
||||
|
||||
|
||||
def run(**kwargs):
|
||||
|
|
|
@ -615,35 +615,43 @@ def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_op
|
|||
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
|
||||
|
||||
|
||||
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
||||
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
||||
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
||||
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
||||
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
||||
def print_mutation(results, hyp, save_dir, bucket):
|
||||
evolve_csv, results_csv, evolve_yaml = save_dir / 'evolve.csv', save_dir / 'results.csv', save_dir / 'hyp_evolve.yaml'
|
||||
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||
'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
|
||||
keys = tuple(x.strip() for x in keys)
|
||||
vals = results + tuple(hyp.values())
|
||||
n = len(keys)
|
||||
|
||||
# Download (optional)
|
||||
if bucket:
|
||||
url = 'gs://%s/evolve.txt' % bucket
|
||||
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
|
||||
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
|
||||
url = f'gs://{bucket}/evolve.csv'
|
||||
if gsutil_getsize(url) > (os.path.getsize(evolve_csv) if os.path.exists(evolve_csv) else 0):
|
||||
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
|
||||
|
||||
with open('evolve.txt', 'a') as f: # append result
|
||||
f.write(c + b + '\n')
|
||||
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
||||
x = x[np.argsort(-fitness(x))] # sort
|
||||
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
|
||||
# Log to evolve.csv
|
||||
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
|
||||
with open(evolve_csv, 'a') as f:
|
||||
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
|
||||
|
||||
# Print to screen
|
||||
print(colorstr('evolve: ') + ', '.join(f'{x.strip():>20s}' for x in keys))
|
||||
print(colorstr('evolve: ') + ', '.join(f'{x:20.5g}' for x in vals), end='\n\n\n')
|
||||
|
||||
# Save yaml
|
||||
for i, k in enumerate(hyp.keys()):
|
||||
hyp[k] = float(x[0, i + 7])
|
||||
with open(yaml_file, 'w') as f:
|
||||
results = tuple(x[0, :7])
|
||||
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
||||
with open(evolve_yaml, 'w') as f:
|
||||
data = pd.read_csv(evolve_csv)
|
||||
data = data.rename(columns=lambda x: x.strip()) # strip keys
|
||||
i = np.argmax(fitness(data.values[:, :7])) #
|
||||
f.write(f'# YOLOv5 Hyperparameter Evolution Results\n' +
|
||||
f'# Best generation: {i}\n' +
|
||||
f'# Last generation: {len(data)}\n' +
|
||||
f'# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + '\n' +
|
||||
f'# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
|
||||
yaml.safe_dump(hyp, f, sort_keys=False)
|
||||
|
||||
if bucket:
|
||||
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
|
||||
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
|
||||
|
||||
|
||||
def apply_classifier(x, model, img, im0):
|
||||
|
|
|
@ -95,9 +95,8 @@ class Loggers():
|
|||
files = sorted(self.save_dir.glob('val*.jpg'))
|
||||
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||||
|
||||
def on_fit_epoch_end(self, mloss, results, lr, epoch, best_fitness, fi):
|
||||
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
||||
# Callback runs at the end of each fit (train+val) epoch
|
||||
vals = list(mloss) + list(results) + lr
|
||||
x = {k: v for k, v in zip(self.keys, vals)} # dict
|
||||
if self.csv:
|
||||
file = self.save_dir / 'results.csv'
|
||||
|
@ -123,7 +122,7 @@ class Loggers():
|
|||
def on_train_end(self, last, best, plots, epoch):
|
||||
# Callback runs on training end
|
||||
if plots:
|
||||
plot_results(dir=self.save_dir) # save results.png
|
||||
plot_results(file=self.save_dir / 'results.csv') # save results.png
|
||||
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
|
||||
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
||||
|
||||
|
|
|
@ -325,30 +325,6 @@ def plot_labels(labels, names=(), save_dir=Path('')):
|
|||
plt.close()
|
||||
|
||||
|
||||
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
|
||||
# Plot hyperparameter evolution results in evolve.txt
|
||||
with open(yaml_file) as f:
|
||||
hyp = yaml.safe_load(f)
|
||||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||
f = fitness(x)
|
||||
# weights = (f - f.min()) ** 2 # for weighted results
|
||||
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||
matplotlib.rc('font', **{'size': 8})
|
||||
for i, (k, v) in enumerate(hyp.items()):
|
||||
y = x[:, i + 7]
|
||||
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
||||
mu = y[f.argmax()] # best single result
|
||||
plt.subplot(6, 5, i + 1)
|
||||
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||||
if i % 5 != 0:
|
||||
plt.yticks([])
|
||||
print('%15s: %.3g' % (k, mu))
|
||||
plt.savefig('evolve.png', dpi=200)
|
||||
print('\nPlot saved as evolve.png')
|
||||
|
||||
|
||||
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
||||
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
||||
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
||||
|
@ -381,7 +357,31 @@ def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
|||
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
||||
|
||||
|
||||
def plot_results(file='', dir=''):
|
||||
def plot_evolve(evolve_csv=Path('path/to/evolve.csv')): # from utils.plots import *; plot_evolve()
|
||||
# Plot evolve.csv hyp evolution results
|
||||
data = pd.read_csv(evolve_csv)
|
||||
keys = [x.strip() for x in data.columns]
|
||||
x = data.values
|
||||
f = fitness(x)
|
||||
j = np.argmax(f) # max fitness index
|
||||
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||
matplotlib.rc('font', **{'size': 8})
|
||||
for i, k in enumerate(keys[7:]):
|
||||
v = x[:, 7 + i]
|
||||
mu = v[j] # best single result
|
||||
plt.subplot(6, 5, i + 1)
|
||||
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||||
if i % 5 != 0:
|
||||
plt.yticks([])
|
||||
print('%15s: %.3g' % (k, mu))
|
||||
f = evolve_csv.with_suffix('.png') # filename
|
||||
plt.savefig(f, dpi=200)
|
||||
print(f'Saved {f}')
|
||||
|
||||
|
||||
def plot_results(file='path/to/results.csv', dir=''):
|
||||
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
||||
save_dir = Path(file).parent if file else Path(dir)
|
||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||
|
|
Loading…
Reference in New Issue