rename
parent
da6c7cea2b
commit
eac0dbc46a
|
@ -69,9 +69,9 @@ jobs:
|
|||
# detect custom
|
||||
python detect.py --weights runs/exp0/weights/last.pt --device $di
|
||||
# test official
|
||||
python test.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 2
|
||||
python eval.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 2
|
||||
# test custom
|
||||
python test.py --weights runs/exp0/weights/last.pt --device $di --batch-size 2
|
||||
python eval.py --weights runs/exp0/weights/last.pt --device $di --batch-size 2
|
||||
# inspect
|
||||
python models/yolo.py --cfg models/${{ matrix.yolo5-model }}.yaml
|
||||
# export
|
||||
|
|
|
@ -27,8 +27,8 @@ This repository represents Ultralytics open-source research into future object d
|
|||
|
||||
|
||||
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
|
||||
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001`
|
||||
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
|
||||
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python eval.py --data coco.yaml --img 736 --conf 0.001`
|
||||
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python eval.py --data coco.yaml --img 640 --conf 0.1`
|
||||
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
|
||||
|
||||
|
||||
|
|
|
@ -236,7 +236,7 @@
|
|||
},
|
||||
"source": [
|
||||
"# Run YOLOv5x on COCO val2017\n",
|
||||
"!python test.py --weights yolov5x.pt --data coco.yaml --img 672"
|
||||
"!python eval.py --weights yolov5x.pt --data coco.yaml --img 672"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
|
@ -319,7 +319,7 @@
|
|||
},
|
||||
"source": [
|
||||
"# Run YOLOv5s on COCO test-dev2017 with argument --task test\n",
|
||||
"!python test.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
|
||||
"!python eval.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
|
@ -717,7 +717,7 @@
|
|||
"for x in best*\n",
|
||||
"do\n",
|
||||
" gsutil cp gs://*/*/*/$x.pt .\n",
|
||||
" python test.py --weights $x.pt --data coco.yaml --img 672\n",
|
||||
" python eval.py --weights $x.pt --data coco.yaml --img 672\n",
|
||||
"done"
|
||||
],
|
||||
"execution_count": null,
|
||||
|
@ -744,8 +744,8 @@
|
|||
" do\n",
|
||||
" python detect.py --weights $x.pt --device $di # detect official\n",
|
||||
" python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n",
|
||||
" python test.py --weights $x.pt --device $di # test official\n",
|
||||
" python test.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
|
||||
" python eval.py --weights $x.pt --device $di # test official\n",
|
||||
" python eval.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
|
||||
" done\n",
|
||||
" python models/yolo.py --cfg $x.yaml # inspect\n",
|
||||
" python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",
|
||||
|
|
Loading…
Reference in New Issue