update datasets.py LoadImages() path improvements and Mixup
parent
0afbb8d498
commit
eae33303d6
|
@ -68,35 +68,37 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
|
|||
|
||||
class LoadImages: # for inference
|
||||
def __init__(self, path, img_size=640):
|
||||
path = str(Path(path)) # os-agnostic
|
||||
files = []
|
||||
if os.path.isdir(path):
|
||||
files = sorted(glob.glob(os.path.join(path, '*.*')))
|
||||
elif os.path.isfile(path):
|
||||
files = [path]
|
||||
p = str(Path(path)) # os-agnostic
|
||||
p = os.path.abspath(p) # absolute path
|
||||
if os.path.isdir(p):
|
||||
files = sorted(glob.glob(os.path.join(p, '*.*')))
|
||||
elif os.path.isfile(p):
|
||||
files = [p]
|
||||
else:
|
||||
raise Exception('ERROR: %s does not exist' % p)
|
||||
|
||||
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
|
||||
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
|
||||
nI, nV = len(images), len(videos)
|
||||
ni, nv = len(images), len(videos)
|
||||
|
||||
self.img_size = img_size
|
||||
self.files = images + videos
|
||||
self.nF = nI + nV # number of files
|
||||
self.video_flag = [False] * nI + [True] * nV
|
||||
self.nf = ni + nv # number of files
|
||||
self.video_flag = [False] * ni + [True] * nv
|
||||
self.mode = 'images'
|
||||
if any(videos):
|
||||
self.new_video(videos[0]) # new video
|
||||
else:
|
||||
self.cap = None
|
||||
assert self.nF > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
|
||||
(path, img_formats, vid_formats)
|
||||
assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
|
||||
(p, img_formats, vid_formats)
|
||||
|
||||
def __iter__(self):
|
||||
self.count = 0
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.count == self.nF:
|
||||
if self.count == self.nf:
|
||||
raise StopIteration
|
||||
path = self.files[self.count]
|
||||
|
||||
|
@ -107,7 +109,7 @@ class LoadImages: # for inference
|
|||
if not ret_val:
|
||||
self.count += 1
|
||||
self.cap.release()
|
||||
if self.count == self.nF: # last video
|
||||
if self.count == self.nf: # last video
|
||||
raise StopIteration
|
||||
else:
|
||||
path = self.files[self.count]
|
||||
|
@ -115,14 +117,14 @@ class LoadImages: # for inference
|
|||
ret_val, img0 = self.cap.read()
|
||||
|
||||
self.frame += 1
|
||||
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='')
|
||||
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
|
||||
|
||||
else:
|
||||
# Read image
|
||||
self.count += 1
|
||||
img0 = cv2.imread(path) # BGR
|
||||
assert img0 is not None, 'Image Not Found ' + path
|
||||
print('image %g/%g %s: ' % (self.count, self.nF, path), end='')
|
||||
print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
|
||||
|
||||
# Padded resize
|
||||
img = letterbox(img0, new_shape=self.img_size)[0]
|
||||
|
@ -140,7 +142,7 @@ class LoadImages: # for inference
|
|||
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
|
||||
def __len__(self):
|
||||
return self.nF # number of files
|
||||
return self.nf # number of files
|
||||
|
||||
|
||||
class LoadWebcam: # for inference
|
||||
|
@ -470,6 +472,13 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
img, labels = load_mosaic(self, index)
|
||||
shapes = None
|
||||
|
||||
# MixUp https://arxiv.org/pdf/1710.09412.pdf
|
||||
# if random.random() < 0.5:
|
||||
# img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
|
||||
# r = np.random.beta(0.3, 0.3) # mixup ratio, alpha=beta=0.3
|
||||
# img = (img * r + img2 * (1 - r)).astype(np.uint8)
|
||||
# labels = np.concatenate((labels, labels2), 0)
|
||||
|
||||
else:
|
||||
# Load image
|
||||
img, (h0, w0), (h, w) = load_image(self, index)
|
||||
|
|
Loading…
Reference in New Issue