mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Remove named arguments where possible (#7105)
* Remove named arguments where possible Speed improvements. * Update yolo.py * Update yolo.py * Update yolo.py
This commit is contained in:
parent
6134ec5d94
commit
ecc2c7ba73
@ -121,7 +121,7 @@ class BottleneckCSP(nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
y1 = self.cv3(self.m(self.cv1(x)))
|
y1 = self.cv3(self.m(self.cv1(x)))
|
||||||
y2 = self.cv2(x)
|
y2 = self.cv2(x)
|
||||||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
||||||
|
|
||||||
|
|
||||||
class C3(nn.Module):
|
class C3(nn.Module):
|
||||||
@ -136,7 +136,7 @@ class C3(nn.Module):
|
|||||||
# self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
# self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
||||||
|
|
||||||
|
|
||||||
class C3TR(C3):
|
class C3TR(C3):
|
||||||
@ -527,7 +527,7 @@ class AutoShape(nn.Module):
|
|||||||
p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
|
p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
|
||||||
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
||||||
if isinstance(imgs, torch.Tensor): # torch
|
if isinstance(imgs, torch.Tensor): # torch
|
||||||
with amp.autocast(enabled=autocast):
|
with amp.autocast(autocast):
|
||||||
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
||||||
|
|
||||||
# Pre-process
|
# Pre-process
|
||||||
@ -550,19 +550,19 @@ class AutoShape(nn.Module):
|
|||||||
shape1.append([y * g for y in s])
|
shape1.append([y * g for y in s])
|
||||||
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
||||||
shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
|
shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
|
||||||
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
|
||||||
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
||||||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
||||||
t.append(time_sync())
|
t.append(time_sync())
|
||||||
|
|
||||||
with amp.autocast(enabled=autocast):
|
with amp.autocast(autocast):
|
||||||
# Inference
|
# Inference
|
||||||
y = self.model(x, augment, profile) # forward
|
y = self.model(x, augment, profile) # forward
|
||||||
t.append(time_sync())
|
t.append(time_sync())
|
||||||
|
|
||||||
# Post-process
|
# Post-process
|
||||||
y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes,
|
y = non_max_suppression(y if self.dmb else y[0], self.conf, self.iou, self.classes, self.agnostic,
|
||||||
agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det) # NMS
|
self.multi_label, max_det=self.max_det) # NMS
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
scale_coords(shape1, y[i][:, :4], shape0[i])
|
scale_coords(shape1, y[i][:, :4], shape0[i])
|
||||||
|
|
||||||
|
@ -71,13 +71,13 @@ class Detect(nn.Module):
|
|||||||
|
|
||||||
def _make_grid(self, nx=20, ny=20, i=0):
|
def _make_grid(self, nx=20, ny=20, i=0):
|
||||||
d = self.anchors[i].device
|
d = self.anchors[i].device
|
||||||
|
shape = 1, self.na, ny, nx, 2 # grid shape
|
||||||
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
|
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
|
||||||
yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
|
yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d), indexing='ij')
|
||||||
else:
|
else:
|
||||||
yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
|
yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d))
|
||||||
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
|
grid = torch.stack((xv, yv), 2).expand(shape).float()
|
||||||
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
|
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float()
|
||||||
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
|
|
||||||
return grid, anchor_grid
|
return grid, anchor_grid
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user