datasets.py self.batch_shapes fix
parent
7a00a5eff2
commit
ee8988b8a2
|
@ -20,7 +20,6 @@ class Detect(nn.Module):
|
|||
self.export = False # onnx export
|
||||
|
||||
def forward(self, x):
|
||||
x = x.copy()
|
||||
z = [] # inference output
|
||||
self.training |= self.export
|
||||
for i in range(self.nl):
|
||||
|
|
4
test.py
4
test.py
|
@ -244,7 +244,7 @@ if __name__ == '__main__':
|
|||
print(opt)
|
||||
|
||||
# task = 'val', 'test', 'study'
|
||||
if opt.task == 'val': # (default) run normally
|
||||
if opt.task in ['val', 'test']: # (default) run normally
|
||||
test(opt.data,
|
||||
opt.weights,
|
||||
opt.batch_size,
|
||||
|
@ -258,7 +258,7 @@ if __name__ == '__main__':
|
|||
elif opt.task == 'study': # run over a range of settings and save/plot
|
||||
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
|
||||
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
||||
x = list(range(256, 1024, 32)) # x axis
|
||||
x = list(range(256, 1024, 64)) # x axis
|
||||
y = [] # y axis
|
||||
for i in x: # img-size
|
||||
print('\nRunning %s point %s...' % (f, i))
|
||||
|
|
|
@ -322,7 +322,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
elif mini > 1:
|
||||
shapes[i] = [1, 1 / mini]
|
||||
|
||||
self.batch_shapes = np.ceil(np.array(shapes) * img_size / 64.).astype(np.int) * 64
|
||||
self.batch_shapes = np.round(np.array(shapes) * img_size / 32. + 1.).astype(np.int) * 32
|
||||
|
||||
# Cache labels
|
||||
self.imgs = [None] * n
|
||||
|
|
Loading…
Reference in New Issue