Update README.zh-CN.md (#10956)
* Update README.zh-CN.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update README.zh-CN.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/10537/head
parent
25c17370dd
commit
fa4bdbe14d
|
@ -1,7 +1,7 @@
|
|||
<div align="center">
|
||||
<p>
|
||||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
|
||||
</p>
|
||||
|
||||
[English](README.md) | [简体中文](README.zh-CN.md)
|
||||
|
|
185
README.zh-CN.md
185
README.zh-CN.md
|
@ -1,7 +1,7 @@
|
|||
<div align="center">
|
||||
<p>
|
||||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
|
||||
</p>
|
||||
|
||||
[英文](README.md)|[简体中文](README.zh-CN.md)<br>
|
||||
|
@ -45,88 +45,24 @@ YOLOv5 🚀 是世界上最受欢迎的视觉 AI,代表<a href="https://ultral
|
|||
</div>
|
||||
</div>
|
||||
|
||||
## <div align="center">实例分割模型 ⭐ 新</div>
|
||||
## <div align="center">YOLOv8 🚀 NEW</div>
|
||||
|
||||
We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model
|
||||
released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**.
|
||||
YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of
|
||||
object detection, image segmentation and image classification tasks.
|
||||
|
||||
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
|
||||
|
||||
```commandline
|
||||
pip install ultralytics
|
||||
```
|
||||
|
||||
<div align="center">
|
||||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
||||
<a href="https://ultralytics.com/yolov8" target="_blank">
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
|
||||
</div>
|
||||
|
||||
我们新的 YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) 实例分割模型是世界上最快和最准确的模型,击败所有当前 [SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)。我们使它非常易于训练、验证和部署。更多细节请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v7.0) 或访问我们的 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) 以快速入门。
|
||||
|
||||
<details>
|
||||
<summary>实例分割模型列表</summary>
|
||||
|
||||
<br>
|
||||
|
||||
我们使用 A100 GPU 在 COCO 上以 640 图像大小训练了 300 epochs 得到 YOLOv5 分割模型。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于再现,我们在 Google [Colab Pro](https://colab.research.google.com/signup) 上进行了所有速度测试。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 训练时长<br><sup>300 epochs<br>A100 GPU(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TRT A100<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||
| ------------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------- | --------------------------------------- | ----------------------------- | ----------------------------- | --------------- | ---------------------- |
|
||||
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
|
||||
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
|
||||
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
|
||||
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
|
||||
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
||||
|
||||
- 所有模型使用 SGD 优化器训练, 都使用 `lr0=0.01` 和 `weight_decay=5e-5` 参数, 图像大小为 640 。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5_v70_official
|
||||
- **准确性**结果都在 COCO 数据集上,使用单模型单尺度测试得到。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
||||
- **推理速度**是使用 100 张图像推理时间进行平均得到,测试环境使用 [Colab Pro](https://colab.research.google.com/signup) 上 A100 高 RAM 实例。结果仅表示推理速度(NMS 每张图像增加约 1 毫秒)。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
||||
- **模型转换**到 FP32 的 ONNX 和 FP16 的 TensorRT 脚本为 `export.py`.<br>运行命令 `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>分割模型使用示例 <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||
|
||||
### 训练
|
||||
|
||||
YOLOv5分割训练支持自动下载 COCO128-seg 分割数据集,用户仅需在启动指令中包含 `--data coco128-seg.yaml` 参数。 若要手动下载,使用命令 `bash data/scripts/get_coco.sh --train --val --segments`, 在下载完毕后,使用命令 `python train.py --data coco.yaml` 开启训练。
|
||||
|
||||
```bash
|
||||
# 单 GPU
|
||||
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
|
||||
|
||||
# 多 GPU, DDP 模式
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### 验证
|
||||
|
||||
在 COCO 数据集上验证 YOLOv5s-seg mask mAP:
|
||||
|
||||
```bash
|
||||
bash data/scripts/get_coco.sh --val --segments # 下载 COCO val segments 数据集 (780MB, 5000 images)
|
||||
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # 验证
|
||||
```
|
||||
|
||||
### 预测
|
||||
|
||||
使用预训练的 YOLOv5m-seg.pt 来预测 bus.jpg:
|
||||
|
||||
```bash
|
||||
python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
|
||||
```
|
||||
|
||||
```python
|
||||
model = torch.hub.load(
|
||||
"ultralytics/yolov5", "custom", "yolov5m-seg.pt"
|
||||
) # 从load from PyTorch Hub 加载模型 (WARNING: 推理暂未支持)
|
||||
```
|
||||
|
||||
|  |  |
|
||||
| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
|
||||
### 模型导出
|
||||
|
||||
将 YOLOv5s-seg 模型导出到 ONNX 和 TensorRT:
|
||||
|
||||
```bash
|
||||
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">文档</div>
|
||||
|
||||
有关训练、测试和部署的完整文档见[YOLOv5 文档](https://docs.ultralytics.com)。请参阅下面的快速入门示例。
|
||||
|
@ -312,6 +248,88 @@ YOLOv5 超级容易上手,简单易学。我们优先考虑现实世界的结
|
|||
|
||||
</details>
|
||||
|
||||
## <div align="center">实例分割模型 ⭐ 新</div>
|
||||
|
||||
我们新的 YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) 实例分割模型是世界上最快和最准确的模型,击败所有当前 [SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)。我们使它非常易于训练、验证和部署。更多细节请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v7.0) 或访问我们的 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) 以快速入门。
|
||||
|
||||
<details>
|
||||
<summary>实例分割模型列表</summary>
|
||||
|
||||
<br>
|
||||
|
||||
<div align="center">
|
||||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
||||
</div>
|
||||
|
||||
我们使用 A100 GPU 在 COCO 上以 640 图像大小训练了 300 epochs 得到 YOLOv5 分割模型。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于再现,我们在 Google [Colab Pro](https://colab.research.google.com/signup) 上进行了所有速度测试。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 训练时长<br><sup>300 epochs<br>A100 GPU(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TRT A100<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||
| ------------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------- | --------------------------------------- | ----------------------------- | ----------------------------- | --------------- | ---------------------- |
|
||||
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
|
||||
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
|
||||
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
|
||||
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
|
||||
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
||||
|
||||
- 所有模型使用 SGD 优化器训练, 都使用 `lr0=0.01` 和 `weight_decay=5e-5` 参数, 图像大小为 640 。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5_v70_official
|
||||
- **准确性**结果都在 COCO 数据集上,使用单模型单尺度测试得到。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
||||
- **推理速度**是使用 100 张图像推理时间进行平均得到,测试环境使用 [Colab Pro](https://colab.research.google.com/signup) 上 A100 高 RAM 实例。结果仅表示推理速度(NMS 每张图像增加约 1 毫秒)。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
||||
- **模型转换**到 FP32 的 ONNX 和 FP16 的 TensorRT 脚本为 `export.py`.<br>运行命令 `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>分割模型使用示例 <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||
|
||||
### 训练
|
||||
|
||||
YOLOv5分割训练支持自动下载 COCO128-seg 分割数据集,用户仅需在启动指令中包含 `--data coco128-seg.yaml` 参数。 若要手动下载,使用命令 `bash data/scripts/get_coco.sh --train --val --segments`, 在下载完毕后,使用命令 `python train.py --data coco.yaml` 开启训练。
|
||||
|
||||
```bash
|
||||
# 单 GPU
|
||||
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
|
||||
|
||||
# 多 GPU, DDP 模式
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### 验证
|
||||
|
||||
在 COCO 数据集上验证 YOLOv5s-seg mask mAP:
|
||||
|
||||
```bash
|
||||
bash data/scripts/get_coco.sh --val --segments # 下载 COCO val segments 数据集 (780MB, 5000 images)
|
||||
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # 验证
|
||||
```
|
||||
|
||||
### 预测
|
||||
|
||||
使用预训练的 YOLOv5m-seg.pt 来预测 bus.jpg:
|
||||
|
||||
```bash
|
||||
python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
|
||||
```
|
||||
|
||||
```python
|
||||
model = torch.hub.load(
|
||||
"ultralytics/yolov5", "custom", "yolov5m-seg.pt"
|
||||
) # 从load from PyTorch Hub 加载模型 (WARNING: 推理暂未支持)
|
||||
```
|
||||
|
||||
|  |  |
|
||||
| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
|
||||
### 模型导出
|
||||
|
||||
将 YOLOv5s-seg 模型导出到 ONNX 和 TensorRT:
|
||||
|
||||
```bash
|
||||
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">分类网络 ⭐ 新</div>
|
||||
|
||||
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) 带来对分类模型训练、验证和部署的支持!详情请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v6.2) 或访问我们的 [YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) 以快速入门。
|
||||
|
@ -423,13 +441,6 @@ python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --inclu
|
|||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
|
||||
</div>
|
||||
|
||||
## <div align="center">APP</div>
|
||||
|
||||
通过下载 [Ultralytics APP](https://ultralytics.com/app_install) ,以在您的 iOS 或 Android 设备上运行 YOLOv5 模型!
|
||||
|
||||
<a align="center" href="https://ultralytics.com/app_install" target="_blank">
|
||||
<img width="100%" alt="Ultralytics mobile app" src="https://user-images.githubusercontent.com/26833433/202829285-39367043-292a-41eb-bb76-c3e74f38e38e.png">
|
||||
|
||||
## <div align="center">贡献</div>
|
||||
|
||||
我们喜欢您的意见或建议!我们希望尽可能简单和透明地为 YOLOv5 做出贡献。请看我们的 [投稿指南](CONTRIBUTING.md),并填写 [YOLOv5调查](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 向我们发送您的体验反馈。感谢我们所有的贡献者!
|
||||
|
@ -448,7 +459,7 @@ YOLOv5 在两种不同的 License 下可用:
|
|||
|
||||
## <div align="center">联系我们</div>
|
||||
|
||||
若发现 YOLOv5 的 bug 或有功能需求,请访问 [GitHub 问题](https://github.com/ultralytics/yolov5/issues) 。如需专业支持,请 [联系我们](https://ultralytics.com/contact) 。
|
||||
请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues) 或 [Ultralytics Community Forum](https://community.ultralytis.com) 以报告 YOLOv5 错误和请求功能。
|
||||
|
||||
<br>
|
||||
<div align="center">
|
||||
|
|
Loading…
Reference in New Issue