parent
fd96810518
commit
fab5085674
|
@ -120,7 +120,7 @@ def custom(path_or_model='path/to/model.pt', autoshape=True):
|
|||
"""
|
||||
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
||||
if isinstance(model, dict):
|
||||
model = model['model'] # load model
|
||||
model = model['ema' if model.get('ema') else 'model'] # load model
|
||||
|
||||
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
||||
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
||||
|
|
|
@ -115,7 +115,8 @@ def attempt_load(weights, map_location=None):
|
|||
model = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
attempt_download(w)
|
||||
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
|
||||
ckpt = torch.load(w, map_location=map_location) # load
|
||||
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
|
||||
|
||||
# Compatibility updates
|
||||
for m in model.modules():
|
||||
|
|
10
train.py
10
train.py
|
@ -151,8 +151,8 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
|
||||
# EMA
|
||||
if ema and ckpt.get('ema'):
|
||||
ema.ema.load_state_dict(ckpt['ema'][0].float().state_dict())
|
||||
ema.updates = ckpt['ema'][1]
|
||||
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
|
||||
ema.updates = ckpt['updates']
|
||||
|
||||
# Results
|
||||
if ckpt.get('training_results') is not None:
|
||||
|
@ -383,9 +383,9 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
ckpt = {'epoch': epoch,
|
||||
'best_fitness': best_fitness,
|
||||
'training_results': results_file.read_text(),
|
||||
'model': ema.ema if final_epoch else deepcopy(
|
||||
model.module if is_parallel(model) else model).half(),
|
||||
'ema': (deepcopy(ema.ema).half(), ema.updates),
|
||||
'model': deepcopy(model.module if is_parallel(model) else model).half(),
|
||||
'ema': deepcopy(ema.ema).half(),
|
||||
'updates': ema.updates,
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'wandb_id': wandb_run.id if wandb else None}
|
||||
|
||||
|
|
|
@ -481,10 +481,12 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non
|
|||
return output
|
||||
|
||||
|
||||
def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
|
||||
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
||||
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
||||
x = torch.load(f, map_location=torch.device('cpu'))
|
||||
for k in 'optimizer', 'training_results', 'wandb_id', 'ema': # keys
|
||||
if x.get('ema'):
|
||||
x['model'] = x['ema'] # replace model with ema
|
||||
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
|
||||
x[k] = None
|
||||
x['epoch'] = -1
|
||||
x['model'].half() # to FP16
|
||||
|
@ -492,7 +494,7 @@ def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *;
|
|||
p.requires_grad = False
|
||||
torch.save(x, s or f)
|
||||
mb = os.path.getsize(s or f) / 1E6 # filesize
|
||||
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
|
||||
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
|
||||
|
||||
|
||||
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
||||
|
|
Loading…
Reference in New Issue