mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Utils reorganization (#1392)
* Utils reorganization * Add new utils files * cleanup * simplify * reduce datasets.py * remove evolve.sh * loadWebcam cleanup
This commit is contained in:
parent
379396e896
commit
fe341fa44d
12
detect.py
12
detect.py
@ -10,14 +10,15 @@ from numpy import random
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import LoadStreams, LoadImages
|
||||
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \
|
||||
plot_one_box, strip_optimizer, set_logging, increment_path
|
||||
strip_optimizer, set_logging, increment_path
|
||||
from utils.plots import plot_one_box
|
||||
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||
|
||||
|
||||
def detect(save_img=False):
|
||||
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
||||
webcam = source.isnumeric() or source.endswith('.txt') or \
|
||||
source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))
|
||||
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
||||
('rtsp://', 'rtmp://', 'http://'))
|
||||
|
||||
# Directories
|
||||
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
||||
@ -38,8 +39,7 @@ def detect(save_img=False):
|
||||
classify = False
|
||||
if classify:
|
||||
modelc = load_classifier(name='resnet101', n=2) # initialize
|
||||
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
|
||||
modelc.to(device).eval()
|
||||
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
||||
|
||||
# Set Dataloader
|
||||
vid_path, vid_writer = None, None
|
||||
@ -53,7 +53,7 @@ def detect(save_img=False):
|
||||
|
||||
# Get names and colors
|
||||
names = model.module.names if hasattr(model, 'module') else model.names
|
||||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
|
||||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
||||
|
||||
# Run inference
|
||||
t0 = time.time()
|
||||
|
@ -13,10 +13,16 @@ import torch.nn as nn
|
||||
|
||||
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, NMS, autoShape
|
||||
from models.experimental import MixConv2d, CrossConv, C3
|
||||
from utils.general import check_anchor_order, make_divisible, check_file, set_logging
|
||||
from utils.autoanchor import check_anchor_order
|
||||
from utils.general import make_divisible, check_file, set_logging
|
||||
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
|
||||
select_device, copy_attr
|
||||
|
||||
try:
|
||||
import thop # for FLOPS computation
|
||||
except ImportError:
|
||||
thop = None
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
stride = None # strides computed during build
|
||||
@ -121,11 +127,7 @@ class Model(nn.Module):
|
||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||
|
||||
if profile:
|
||||
try:
|
||||
import thop
|
||||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
|
||||
except:
|
||||
o = 0
|
||||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
|
||||
t = time_synchronized()
|
||||
for _ in range(10):
|
||||
_ = m(x)
|
||||
|
8
test.py
8
test.py
@ -11,9 +11,11 @@ from tqdm import tqdm
|
||||
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, \
|
||||
non_max_suppression, scale_coords, xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, \
|
||||
ap_per_class, set_logging, increment_path
|
||||
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \
|
||||
non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, clip_coords, set_logging, increment_path
|
||||
from utils.loss import compute_loss
|
||||
from utils.metrics import ap_per_class
|
||||
from utils.plots import plot_images, output_to_target
|
||||
from utils.torch_utils import select_device, time_synchronized
|
||||
|
||||
|
||||
|
19
train.py
19
train.py
@ -3,7 +3,6 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import shutil
|
||||
import time
|
||||
from pathlib import Path
|
||||
from warnings import warn
|
||||
@ -23,13 +22,15 @@ from tqdm import tqdm
|
||||
|
||||
import test # import test.py to get mAP after each epoch
|
||||
from models.yolo import Model
|
||||
from utils.autoanchor import check_anchors
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import (
|
||||
torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
|
||||
compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
|
||||
check_git_status, check_img_size, increment_path, print_mutation, plot_evolution, set_logging, init_seeds)
|
||||
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
||||
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
|
||||
print_mutation, set_logging
|
||||
from utils.google_utils import attempt_download
|
||||
from utils.torch_utils import ModelEMA, select_device, intersect_dicts
|
||||
from utils.loss import compute_loss
|
||||
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
|
||||
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -209,7 +210,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
||||
|
||||
# Start training
|
||||
t0 = time.time()
|
||||
nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||||
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||||
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
@ -334,9 +335,9 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
||||
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||||
|
||||
# Log
|
||||
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
||||
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
||||
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||
'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
||||
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
||||
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
||||
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
|
||||
if tb_writer:
|
||||
|
@ -1,3 +1,5 @@
|
||||
# Activation functions
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
152
utils/autoanchor.py
Normal file
152
utils/autoanchor.py
Normal file
@ -0,0 +1,152 @@
|
||||
# Auto-anchor utils
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import yaml
|
||||
from scipy.cluster.vq import kmeans
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def check_anchor_order(m):
|
||||
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
||||
da = a[-1] - a[0] # delta a
|
||||
ds = m.stride[-1] - m.stride[0] # delta s
|
||||
if da.sign() != ds.sign(): # same order
|
||||
print('Reversing anchor order')
|
||||
m.anchors[:] = m.anchors.flip(0)
|
||||
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
||||
|
||||
|
||||
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||
# Check anchor fit to data, recompute if necessary
|
||||
print('\nAnalyzing anchors... ', end='')
|
||||
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||
|
||||
def metric(k): # compute metric
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||
best = x.max(1)[0] # best_x
|
||||
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
||||
bpr = (best > 1. / thr).float().mean() # best possible recall
|
||||
return bpr, aat
|
||||
|
||||
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
||||
print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='')
|
||||
if bpr < 0.98: # threshold to recompute
|
||||
print('. Attempting to improve anchors, please wait...')
|
||||
na = m.anchor_grid.numel() // 2 # number of anchors
|
||||
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
|
||||
if new_bpr > bpr: # replace anchors
|
||||
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
|
||||
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
|
||||
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
||||
check_anchor_order(m)
|
||||
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
||||
else:
|
||||
print('Original anchors better than new anchors. Proceeding with original anchors.')
|
||||
print('') # newline
|
||||
|
||||
|
||||
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||
""" Creates kmeans-evolved anchors from training dataset
|
||||
|
||||
Arguments:
|
||||
path: path to dataset *.yaml, or a loaded dataset
|
||||
n: number of anchors
|
||||
img_size: image size used for training
|
||||
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||
gen: generations to evolve anchors using genetic algorithm
|
||||
verbose: print all results
|
||||
|
||||
Return:
|
||||
k: kmeans evolved anchors
|
||||
|
||||
Usage:
|
||||
from utils.general import *; _ = kmean_anchors()
|
||||
"""
|
||||
thr = 1. / thr
|
||||
|
||||
def metric(k, wh): # compute metrics
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||
return x, x.max(1)[0] # x, best_x
|
||||
|
||||
def anchor_fitness(k): # mutation fitness
|
||||
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||
return (best * (best > thr).float()).mean() # fitness
|
||||
|
||||
def print_results(k):
|
||||
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||
x, best = metric(k, wh0)
|
||||
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
|
||||
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
|
||||
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
|
||||
for i, x in enumerate(k):
|
||||
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||||
return k
|
||||
|
||||
if isinstance(path, str): # *.yaml file
|
||||
with open(path) as f:
|
||||
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||
from utils.datasets import LoadImagesAndLabels
|
||||
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||
else:
|
||||
dataset = path # dataset
|
||||
|
||||
# Get label wh
|
||||
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||
|
||||
# Filter
|
||||
i = (wh0 < 3.0).any(1).sum()
|
||||
if i:
|
||||
print('WARNING: Extremely small objects found. '
|
||||
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0)))
|
||||
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
||||
|
||||
# Kmeans calculation
|
||||
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
|
||||
s = wh.std(0) # sigmas for whitening
|
||||
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
||||
k *= s
|
||||
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
||||
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
||||
k = print_results(k)
|
||||
|
||||
# Plot
|
||||
# k, d = [None] * 20, [None] * 20
|
||||
# for i in tqdm(range(1, 21)):
|
||||
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7))
|
||||
# ax = ax.ravel()
|
||||
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||
# fig.tight_layout()
|
||||
# fig.savefig('wh.png', dpi=200)
|
||||
|
||||
# Evolve
|
||||
npr = np.random
|
||||
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar
|
||||
for _ in pbar:
|
||||
v = np.ones(sh)
|
||||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||
kg = (k.copy() * v).clip(min=2.0)
|
||||
fg = anchor_fitness(kg)
|
||||
if fg > f:
|
||||
f, k = fg, kg.copy()
|
||||
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
|
||||
if verbose:
|
||||
print_results(k)
|
||||
|
||||
return print_results(k)
|
@ -1,3 +1,5 @@
|
||||
# Dataset utils and dataloaders
|
||||
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
@ -16,8 +18,10 @@ from PIL import Image, ExifTags
|
||||
from torch.utils.data import Dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.general import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
|
||||
from utils.general import xyxy2xywh, xywh2xyxy
|
||||
from utils.torch_utils import torch_distributed_zero_first
|
||||
|
||||
# Parameters
|
||||
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
||||
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
|
||||
vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv']
|
||||
@ -50,7 +54,7 @@ def exif_size(img):
|
||||
|
||||
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
||||
rank=-1, world_size=1, workers=8):
|
||||
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache.
|
||||
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache
|
||||
with torch_distributed_zero_first(rank):
|
||||
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
||||
augment=augment, # augment images
|
||||
@ -75,9 +79,9 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
|
||||
|
||||
|
||||
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
||||
""" Dataloader that reuses workers.
|
||||
""" Dataloader that reuses workers
|
||||
|
||||
Uses same syntax as vanilla DataLoader.
|
||||
Uses same syntax as vanilla DataLoader
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
@ -94,7 +98,7 @@ class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
||||
|
||||
|
||||
class _RepeatSampler(object):
|
||||
""" Sampler that repeats forever.
|
||||
""" Sampler that repeats forever
|
||||
|
||||
Args:
|
||||
sampler (Sampler)
|
||||
@ -177,7 +181,6 @@ class LoadImages: # for inference
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
|
||||
return path, img, img0, self.cap
|
||||
|
||||
def new_video(self, path):
|
||||
@ -190,23 +193,15 @@ class LoadImages: # for inference
|
||||
|
||||
|
||||
class LoadWebcam: # for inference
|
||||
def __init__(self, pipe=0, img_size=640):
|
||||
def __init__(self, pipe='0', img_size=640):
|
||||
self.img_size = img_size
|
||||
|
||||
if pipe == '0':
|
||||
pipe = 0 # local camera
|
||||
if pipe.isnumeric():
|
||||
pipe = eval(pipe) # local camera
|
||||
# pipe = 'rtsp://192.168.1.64/1' # IP camera
|
||||
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
|
||||
# pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
|
||||
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
|
||||
|
||||
# https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
|
||||
# pipe = '"rtspsrc location="rtsp://username:password@192.168.1.64/1" latency=10 ! appsink' # GStreamer
|
||||
|
||||
# https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
|
||||
# https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
|
||||
# pipe = "rtspsrc location=rtsp://root:root@192.168.0.91:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer
|
||||
|
||||
self.pipe = pipe
|
||||
self.cap = cv2.VideoCapture(pipe) # video capture object
|
||||
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
||||
@ -895,52 +890,6 @@ def cutout(image, labels):
|
||||
return labels
|
||||
|
||||
|
||||
def reduce_img_size(path='path/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
|
||||
# creates a new ./images_reduced folder with reduced size images of maximum size img_size
|
||||
path_new = path + '_reduced' # reduced images path
|
||||
create_folder(path_new)
|
||||
for f in tqdm(glob.glob('%s/*.*' % path)):
|
||||
try:
|
||||
img = cv2.imread(f)
|
||||
h, w = img.shape[:2]
|
||||
r = img_size / max(h, w) # size ratio
|
||||
if r < 1.0:
|
||||
img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
|
||||
fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
|
||||
cv2.imwrite(fnew, img)
|
||||
except:
|
||||
print('WARNING: image failure %s' % f)
|
||||
|
||||
|
||||
def recursive_dataset2bmp(dataset='path/dataset_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
|
||||
# Converts dataset to bmp (for faster training)
|
||||
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
|
||||
for a, b, files in os.walk(dataset):
|
||||
for file in tqdm(files, desc=a):
|
||||
p = a + '/' + file
|
||||
s = Path(file).suffix
|
||||
if s == '.txt': # replace text
|
||||
with open(p, 'r') as f:
|
||||
lines = f.read()
|
||||
for f in formats:
|
||||
lines = lines.replace(f, '.bmp')
|
||||
with open(p, 'w') as f:
|
||||
f.write(lines)
|
||||
elif s in formats: # replace image
|
||||
cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
|
||||
if s != '.bmp':
|
||||
os.system("rm '%s'" % p)
|
||||
|
||||
|
||||
def imagelist2folder(path='path/images.txt'): # from utils.datasets import *; imagelist2folder()
|
||||
# Copies all the images in a text file (list of images) into a folder
|
||||
create_folder(path[:-4])
|
||||
with open(path, 'r') as f:
|
||||
for line in f.read().splitlines():
|
||||
os.system('cp "%s" %s' % (line, path[:-4]))
|
||||
print(line)
|
||||
|
||||
|
||||
def create_folder(path='./new'):
|
||||
# Create folder
|
||||
if os.path.exists(path):
|
||||
|
@ -1,15 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Hyperparameter evolution commands (avoids CUDA memory leakage issues)
|
||||
# Replaces train.py python generations 'for' loop with a bash 'for' loop
|
||||
|
||||
# Start on 4-GPU machine
|
||||
#for i in 0 1 2 3; do
|
||||
# t=ultralytics/yolov5:evolve && sudo docker pull $t && sudo docker run -d --ipc=host --gpus all -v "$(pwd)"/VOC:/usr/src/VOC $t bash utils/evolve.sh $i
|
||||
# sleep 60 # avoid simultaneous evolve.txt read/write
|
||||
#done
|
||||
|
||||
# Hyperparameter evolution commands
|
||||
while true; do
|
||||
# python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50 --evolve --bucket ult/evolve/voc --device $1
|
||||
python train.py --batch 40 --weights yolov5m.pt --data coco.yaml --img 640 --epochs 30 --evolve --bucket ult/evolve/coco --device $1
|
||||
done
|
888
utils/general.py
888
utils/general.py
@ -1,3 +1,5 @@
|
||||
# General utils
|
||||
|
||||
import glob
|
||||
import logging
|
||||
import math
|
||||
@ -5,27 +7,19 @@ import os
|
||||
import platform
|
||||
import random
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import yaml
|
||||
from PIL import Image
|
||||
from scipy.cluster.vq import kmeans
|
||||
from scipy.signal import butter, filtfilt
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.google_utils import gsutil_getsize
|
||||
from utils.torch_utils import is_parallel, init_torch_seeds
|
||||
from utils.metrics import fitness
|
||||
from utils.torch_utils import init_torch_seeds
|
||||
|
||||
# Set printoptions
|
||||
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||||
@ -36,18 +30,6 @@ matplotlib.rc('font', **{'size': 11})
|
||||
cv2.setNumThreads(0)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def torch_distributed_zero_first(local_rank: int):
|
||||
"""
|
||||
Decorator to make all processes in distributed training wait for each local_master to do something.
|
||||
"""
|
||||
if local_rank not in [-1, 0]:
|
||||
torch.distributed.barrier()
|
||||
yield
|
||||
if local_rank == 0:
|
||||
torch.distributed.barrier()
|
||||
|
||||
|
||||
def set_logging(rank=-1):
|
||||
logging.basicConfig(
|
||||
format="%(message)s",
|
||||
@ -82,51 +64,6 @@ def check_img_size(img_size, s=32):
|
||||
return new_size
|
||||
|
||||
|
||||
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||
# Check anchor fit to data, recompute if necessary
|
||||
print('\nAnalyzing anchors... ', end='')
|
||||
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||
|
||||
def metric(k): # compute metric
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||
best = x.max(1)[0] # best_x
|
||||
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
||||
bpr = (best > 1. / thr).float().mean() # best possible recall
|
||||
return bpr, aat
|
||||
|
||||
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
||||
print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='')
|
||||
if bpr < 0.98: # threshold to recompute
|
||||
print('. Attempting to generate improved anchors, please wait...' % bpr)
|
||||
na = m.anchor_grid.numel() // 2 # number of anchors
|
||||
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
|
||||
if new_bpr > bpr: # replace anchors
|
||||
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
|
||||
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
|
||||
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
||||
check_anchor_order(m)
|
||||
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
||||
else:
|
||||
print('Original anchors better than new anchors. Proceeding with original anchors.')
|
||||
print('') # newline
|
||||
|
||||
|
||||
def check_anchor_order(m):
|
||||
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
||||
da = a[-1] - a[0] # delta a
|
||||
ds = m.stride[-1] - m.stride[0] # delta s
|
||||
if da.sign() != ds.sign(): # same order
|
||||
print('Reversing anchor order')
|
||||
m.anchors[:] = m.anchors.flip(0)
|
||||
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
||||
|
||||
|
||||
def check_file(file):
|
||||
# Search for file if not found
|
||||
if os.path.isfile(file) or file == '':
|
||||
@ -139,7 +76,7 @@ def check_file(file):
|
||||
|
||||
|
||||
def check_dataset(dict):
|
||||
# Download dataset if not found
|
||||
# Download dataset if not found locally
|
||||
val, s = dict.get('val'), dict.get('download')
|
||||
if val and len(val):
|
||||
val = [os.path.abspath(x) for x in (val if isinstance(val, list) else [val])] # val path
|
||||
@ -247,106 +184,6 @@ def clip_coords(boxes, img_shape):
|
||||
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
||||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, fname='precision-recall_curve.png'):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
tp: True positives (nparray, nx1 or nx10).
|
||||
conf: Objectness value from 0-1 (nparray).
|
||||
pred_cls: Predicted object classes (nparray).
|
||||
target_cls: True object classes (nparray).
|
||||
plot: Plot precision-recall curve at mAP@0.5
|
||||
fname: Plot filename
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
|
||||
# Sort by objectness
|
||||
i = np.argsort(-conf)
|
||||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||
|
||||
# Find unique classes
|
||||
unique_classes = np.unique(target_cls)
|
||||
|
||||
# Create Precision-Recall curve and compute AP for each class
|
||||
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
||||
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
||||
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
||||
for ci, c in enumerate(unique_classes):
|
||||
i = pred_cls == c
|
||||
n_l = (target_cls == c).sum() # number of labels
|
||||
n_p = i.sum() # number of predictions
|
||||
|
||||
if n_p == 0 or n_l == 0:
|
||||
continue
|
||||
else:
|
||||
# Accumulate FPs and TPs
|
||||
fpc = (1 - tp[i]).cumsum(0)
|
||||
tpc = tp[i].cumsum(0)
|
||||
|
||||
# Recall
|
||||
recall = tpc / (n_l + 1e-16) # recall curve
|
||||
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
||||
|
||||
# Precision
|
||||
precision = tpc / (tpc + fpc) # precision curve
|
||||
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
||||
|
||||
# AP from recall-precision curve
|
||||
for j in range(tp.shape[1]):
|
||||
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||
if j == 0:
|
||||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||
|
||||
# Compute F1 score (harmonic mean of precision and recall)
|
||||
f1 = 2 * p * r / (p + r + 1e-16)
|
||||
|
||||
if plot:
|
||||
py = np.stack(py, axis=1)
|
||||
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
|
||||
ax.plot(px, py, linewidth=0.5, color='grey') # plot(recall, precision)
|
||||
ax.plot(px, py.mean(1), linewidth=2, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||||
ax.set_xlabel('Recall')
|
||||
ax.set_ylabel('Precision')
|
||||
ax.set_xlim(0, 1)
|
||||
ax.set_ylim(0, 1)
|
||||
plt.legend()
|
||||
fig.tight_layout()
|
||||
fig.savefig(fname, dpi=200)
|
||||
|
||||
return p, r, ap, f1, unique_classes.astype('int32')
|
||||
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rbgirshick/py-faster-rcnn.
|
||||
# Arguments
|
||||
recall: The recall curve (list).
|
||||
precision: The precision curve (list).
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
|
||||
# Append sentinel values to beginning and end
|
||||
mrec = recall # np.concatenate(([0.], recall, [recall[-1] + 1E-3]))
|
||||
mpre = precision # np.concatenate(([0.], precision, [0.]))
|
||||
|
||||
# Compute the precision envelope
|
||||
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||
|
||||
# Integrate area under curve
|
||||
method = 'interp' # methods: 'continuous', 'interp'
|
||||
if method == 'interp':
|
||||
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||
else: # 'continuous'
|
||||
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||
|
||||
return ap, mpre, mrec
|
||||
|
||||
|
||||
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9):
|
||||
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
||||
box2 = box2.T
|
||||
@ -425,178 +262,6 @@ def wh_iou(wh1, wh2):
|
||||
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
||||
|
||||
|
||||
class FocalLoss(nn.Module):
|
||||
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||
super(FocalLoss, self).__init__()
|
||||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||
self.gamma = gamma
|
||||
self.alpha = alpha
|
||||
self.reduction = loss_fcn.reduction
|
||||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
# p_t = torch.exp(-loss)
|
||||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||
|
||||
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||
loss *= alpha_factor * modulating_factor
|
||||
|
||||
if self.reduction == 'mean':
|
||||
return loss.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return loss.sum()
|
||||
else: # 'none'
|
||||
return loss
|
||||
|
||||
|
||||
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||
# return positive, negative label smoothing BCE targets
|
||||
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||
|
||||
|
||||
class BCEBlurWithLogitsLoss(nn.Module):
|
||||
# BCEwithLogitLoss() with reduced missing label effects.
|
||||
def __init__(self, alpha=0.05):
|
||||
super(BCEBlurWithLogitsLoss, self).__init__()
|
||||
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||||
self.alpha = alpha
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
pred = torch.sigmoid(pred) # prob from logits
|
||||
dx = pred - true # reduce only missing label effects
|
||||
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||||
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||||
loss *= alpha_factor
|
||||
return loss.mean()
|
||||
|
||||
|
||||
def compute_loss(p, targets, model): # predictions, targets, model
|
||||
device = targets.device
|
||||
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
|
||||
h = model.hyp # hyperparameters
|
||||
|
||||
# Define criteria
|
||||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device)
|
||||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device)
|
||||
|
||||
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||
cp, cn = smooth_BCE(eps=0.0)
|
||||
|
||||
# Focal loss
|
||||
g = h['fl_gamma'] # focal loss gamma
|
||||
if g > 0:
|
||||
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||
|
||||
# Losses
|
||||
nt = 0 # number of targets
|
||||
np = len(p) # number of outputs
|
||||
balance = [4.0, 1.0, 0.4] if np == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
|
||||
for i, pi in enumerate(p): # layer index, layer predictions
|
||||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
||||
|
||||
n = b.shape[0] # number of targets
|
||||
if n:
|
||||
nt += n # cumulative targets
|
||||
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
||||
|
||||
# Regression
|
||||
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
||||
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
||||
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
|
||||
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||
lbox += (1.0 - iou).mean() # iou loss
|
||||
|
||||
# Objectness
|
||||
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||||
|
||||
# Classification
|
||||
if model.nc > 1: # cls loss (only if multiple classes)
|
||||
t = torch.full_like(ps[:, 5:], cn, device=device) # targets
|
||||
t[range(n), tcls[i]] = cp
|
||||
lcls += BCEcls(ps[:, 5:], t) # BCE
|
||||
|
||||
# Append targets to text file
|
||||
# with open('targets.txt', 'a') as file:
|
||||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||
|
||||
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
||||
|
||||
s = 3 / np # output count scaling
|
||||
lbox *= h['box'] * s
|
||||
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
|
||||
lcls *= h['cls'] * s
|
||||
bs = tobj.shape[0] # batch size
|
||||
|
||||
loss = lbox + lobj + lcls
|
||||
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
||||
|
||||
|
||||
def build_targets(p, targets, model):
|
||||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
||||
tcls, tbox, indices, anch = [], [], [], []
|
||||
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||||
|
||||
g = 0.5 # bias
|
||||
off = torch.tensor([[0, 0],
|
||||
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||||
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||
], device=targets.device).float() * g # offsets
|
||||
|
||||
for i in range(det.nl):
|
||||
anchors = det.anchors[i]
|
||||
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||||
|
||||
# Match targets to anchors
|
||||
t = targets * gain
|
||||
if nt:
|
||||
# Matches
|
||||
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||||
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
|
||||
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||
t = t[j] # filter
|
||||
|
||||
# Offsets
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gxi = gain[[2, 3]] - gxy # inverse
|
||||
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||||
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||||
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||
t = t.repeat((5, 1, 1))[j]
|
||||
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||
else:
|
||||
t = targets[0]
|
||||
offsets = 0
|
||||
|
||||
# Define
|
||||
b, c = t[:, :2].long().T # image, class
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gwh = t[:, 4:6] # grid wh
|
||||
gij = (gxy - offsets).long()
|
||||
gi, gj = gij.T # grid xy indices
|
||||
|
||||
# Append
|
||||
a = t[:, 6].long() # anchor indices
|
||||
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||||
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||
anch.append(anchors[a]) # anchors
|
||||
tcls.append(c) # class
|
||||
|
||||
return tcls, tbox, indices, anch
|
||||
|
||||
|
||||
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False):
|
||||
"""Performs Non-Maximum Suppression (NMS) on inference results
|
||||
|
||||
@ -662,15 +327,12 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False,
|
||||
if i.shape[0] > max_det: # limit detections
|
||||
i = i[:max_det]
|
||||
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||
try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||
weights = iou * scores[None] # box weights
|
||||
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||
if redundant:
|
||||
i = i[iou.sum(1) > 1] # require redundancy
|
||||
except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
|
||||
print(x, i, x.shape, i.shape)
|
||||
pass
|
||||
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||
weights = iou * scores[None] # box weights
|
||||
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||
if redundant:
|
||||
i = i[iou.sum(1) > 1] # require redundancy
|
||||
|
||||
output[xi] = x[i]
|
||||
if (time.time() - t) > time_limit:
|
||||
@ -693,170 +355,6 @@ def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *;
|
||||
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
|
||||
|
||||
|
||||
def coco_class_count(path='../coco/labels/train2014/'):
|
||||
# Histogram of occurrences per class
|
||||
nc = 80 # number classes
|
||||
x = np.zeros(nc, dtype='int32')
|
||||
files = sorted(glob.glob('%s/*.*' % path))
|
||||
for i, file in enumerate(files):
|
||||
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
|
||||
x += np.bincount(labels[:, 0].astype('int32'), minlength=nc)
|
||||
print(i, len(files))
|
||||
|
||||
|
||||
def coco_only_people(path='../coco/labels/train2017/'): # from utils.general import *; coco_only_people()
|
||||
# Find images with only people
|
||||
files = sorted(glob.glob('%s/*.*' % path))
|
||||
for i, file in enumerate(files):
|
||||
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
|
||||
if all(labels[:, 0] == 0):
|
||||
print(labels.shape[0], file)
|
||||
|
||||
|
||||
def crop_images_random(path='../images/', scale=0.50): # from utils.general import *; crop_images_random()
|
||||
# crops images into random squares up to scale fraction
|
||||
# WARNING: overwrites images!
|
||||
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
|
||||
img = cv2.imread(file) # BGR
|
||||
if img is not None:
|
||||
h, w = img.shape[:2]
|
||||
|
||||
# create random mask
|
||||
a = 30 # minimum size (pixels)
|
||||
mask_h = random.randint(a, int(max(a, h * scale))) # mask height
|
||||
mask_w = mask_h # mask width
|
||||
|
||||
# box
|
||||
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||||
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||||
xmax = min(w, xmin + mask_w)
|
||||
ymax = min(h, ymin + mask_h)
|
||||
|
||||
# apply random color mask
|
||||
cv2.imwrite(file, img[ymin:ymax, xmin:xmax])
|
||||
|
||||
|
||||
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
|
||||
# Makes single-class coco datasets. from utils.general import *; coco_single_class_labels()
|
||||
if os.path.exists('new/'):
|
||||
shutil.rmtree('new/') # delete output folder
|
||||
os.makedirs('new/') # make new output folder
|
||||
os.makedirs('new/labels/')
|
||||
os.makedirs('new/images/')
|
||||
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
|
||||
with open(file, 'r') as f:
|
||||
labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
||||
i = labels[:, 0] == label_class
|
||||
if any(i):
|
||||
img_file = file.replace('labels', 'images').replace('txt', 'jpg')
|
||||
labels[:, 0] = 0 # reset class to 0
|
||||
with open('new/images.txt', 'a') as f: # add image to dataset list
|
||||
f.write(img_file + '\n')
|
||||
with open('new/labels/' + Path(file).name, 'a') as f: # write label
|
||||
for l in labels[i]:
|
||||
f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l))
|
||||
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
|
||||
|
||||
|
||||
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||
""" Creates kmeans-evolved anchors from training dataset
|
||||
|
||||
Arguments:
|
||||
path: path to dataset *.yaml, or a loaded dataset
|
||||
n: number of anchors
|
||||
img_size: image size used for training
|
||||
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||
gen: generations to evolve anchors using genetic algorithm
|
||||
|
||||
Return:
|
||||
k: kmeans evolved anchors
|
||||
|
||||
Usage:
|
||||
from utils.general import *; _ = kmean_anchors()
|
||||
"""
|
||||
thr = 1. / thr
|
||||
|
||||
def metric(k, wh): # compute metrics
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||
return x, x.max(1)[0] # x, best_x
|
||||
|
||||
def fitness(k): # mutation fitness
|
||||
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||
return (best * (best > thr).float()).mean() # fitness
|
||||
|
||||
def print_results(k):
|
||||
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||
x, best = metric(k, wh0)
|
||||
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
|
||||
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
|
||||
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
|
||||
for i, x in enumerate(k):
|
||||
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||||
return k
|
||||
|
||||
if isinstance(path, str): # *.yaml file
|
||||
with open(path) as f:
|
||||
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||
from utils.datasets import LoadImagesAndLabels
|
||||
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||
else:
|
||||
dataset = path # dataset
|
||||
|
||||
# Get label wh
|
||||
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||
|
||||
# Filter
|
||||
i = (wh0 < 3.0).any(1).sum()
|
||||
if i:
|
||||
print('WARNING: Extremely small objects found. '
|
||||
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0)))
|
||||
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
||||
|
||||
# Kmeans calculation
|
||||
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
|
||||
s = wh.std(0) # sigmas for whitening
|
||||
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
||||
k *= s
|
||||
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
||||
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
||||
k = print_results(k)
|
||||
|
||||
# Plot
|
||||
# k, d = [None] * 20, [None] * 20
|
||||
# for i in tqdm(range(1, 21)):
|
||||
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7))
|
||||
# ax = ax.ravel()
|
||||
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||
# fig.tight_layout()
|
||||
# fig.savefig('wh.png', dpi=200)
|
||||
|
||||
# Evolve
|
||||
npr = np.random
|
||||
f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar
|
||||
for _ in pbar:
|
||||
v = np.ones(sh)
|
||||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||
kg = (k.copy() * v).clip(min=2.0)
|
||||
fg = fitness(kg)
|
||||
if fg > f:
|
||||
f, k = fg, kg.copy()
|
||||
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
|
||||
if verbose:
|
||||
print_results(k)
|
||||
|
||||
return print_results(k)
|
||||
|
||||
|
||||
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
||||
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
||||
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
||||
@ -923,34 +421,6 @@ def apply_classifier(x, model, img, im0):
|
||||
return x
|
||||
|
||||
|
||||
def fitness(x):
|
||||
# Returns fitness (for use with results.txt or evolve.txt)
|
||||
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||
return (x[:, :4] * w).sum(1)
|
||||
|
||||
|
||||
def output_to_target(output, width, height):
|
||||
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
||||
if isinstance(output, torch.Tensor):
|
||||
output = output.cpu().numpy()
|
||||
|
||||
targets = []
|
||||
for i, o in enumerate(output):
|
||||
if o is not None:
|
||||
for pred in o:
|
||||
box = pred[:4]
|
||||
w = (box[2] - box[0]) / width
|
||||
h = (box[3] - box[1]) / height
|
||||
x = box[0] / width + w / 2
|
||||
y = box[1] / height + h / 2
|
||||
conf = pred[4]
|
||||
cls = int(pred[5])
|
||||
|
||||
targets.append([i, cls, x, y, w, h, conf])
|
||||
|
||||
return np.array(targets)
|
||||
|
||||
|
||||
def increment_path(path, exist_ok=True, sep=''):
|
||||
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
||||
path = Path(path) # os-agnostic
|
||||
@ -962,339 +432,3 @@ def increment_path(path, exist_ok=True, sep=''):
|
||||
i = [int(m.groups()[0]) for m in matches if m] # indices
|
||||
n = max(i) + 1 if i else 2 # increment number
|
||||
return f"{path}{sep}{n}" # update path
|
||||
|
||||
|
||||
# Plotting functions ---------------------------------------------------------------------------------------------------
|
||||
def hist2d(x, y, n=100):
|
||||
# 2d histogram used in labels.png and evolve.png
|
||||
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
||||
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
||||
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
||||
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
||||
return np.log(hist[xidx, yidx])
|
||||
|
||||
|
||||
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
||||
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
||||
def butter_lowpass(cutoff, fs, order):
|
||||
nyq = 0.5 * fs
|
||||
normal_cutoff = cutoff / nyq
|
||||
b, a = butter(order, normal_cutoff, btype='low', analog=False)
|
||||
return b, a
|
||||
|
||||
b, a = butter_lowpass(cutoff, fs, order=order)
|
||||
return filtfilt(b, a, data) # forward-backward filter
|
||||
|
||||
|
||||
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
|
||||
# Plots one bounding box on image img
|
||||
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
||||
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||||
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
||||
if label:
|
||||
tf = max(tl - 1, 1) # font thickness
|
||||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
||||
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
||||
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||
|
||||
|
||||
def plot_wh_methods(): # from utils.general import *; plot_wh_methods()
|
||||
# Compares the two methods for width-height anchor multiplication
|
||||
# https://github.com/ultralytics/yolov3/issues/168
|
||||
x = np.arange(-4.0, 4.0, .1)
|
||||
ya = np.exp(x)
|
||||
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
|
||||
|
||||
fig = plt.figure(figsize=(6, 3), dpi=150)
|
||||
plt.plot(x, ya, '.-', label='YOLOv3')
|
||||
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
|
||||
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
|
||||
plt.xlim(left=-4, right=4)
|
||||
plt.ylim(bottom=0, top=6)
|
||||
plt.xlabel('input')
|
||||
plt.ylabel('output')
|
||||
plt.grid()
|
||||
plt.legend()
|
||||
fig.tight_layout()
|
||||
fig.savefig('comparison.png', dpi=200)
|
||||
|
||||
|
||||
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
|
||||
tl = 3 # line thickness
|
||||
tf = max(tl - 1, 1) # font thickness
|
||||
|
||||
if isinstance(images, torch.Tensor):
|
||||
images = images.cpu().float().numpy()
|
||||
|
||||
if isinstance(targets, torch.Tensor):
|
||||
targets = targets.cpu().numpy()
|
||||
|
||||
# un-normalise
|
||||
if np.max(images[0]) <= 1:
|
||||
images *= 255
|
||||
|
||||
bs, _, h, w = images.shape # batch size, _, height, width
|
||||
bs = min(bs, max_subplots) # limit plot images
|
||||
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||
|
||||
# Check if we should resize
|
||||
scale_factor = max_size / max(h, w)
|
||||
if scale_factor < 1:
|
||||
h = math.ceil(scale_factor * h)
|
||||
w = math.ceil(scale_factor * w)
|
||||
|
||||
# Empty array for output
|
||||
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)
|
||||
|
||||
# Fix class - colour map
|
||||
prop_cycle = plt.rcParams['axes.prop_cycle']
|
||||
# https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
|
||||
hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||
color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']]
|
||||
|
||||
for i, img in enumerate(images):
|
||||
if i == max_subplots: # if last batch has fewer images than we expect
|
||||
break
|
||||
|
||||
block_x = int(w * (i // ns))
|
||||
block_y = int(h * (i % ns))
|
||||
|
||||
img = img.transpose(1, 2, 0)
|
||||
if scale_factor < 1:
|
||||
img = cv2.resize(img, (w, h))
|
||||
|
||||
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
|
||||
if len(targets) > 0:
|
||||
image_targets = targets[targets[:, 0] == i]
|
||||
boxes = xywh2xyxy(image_targets[:, 2:6]).T
|
||||
classes = image_targets[:, 1].astype('int')
|
||||
labels = image_targets.shape[1] == 6 # labels if no conf column
|
||||
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
|
||||
|
||||
boxes[[0, 2]] *= w
|
||||
boxes[[0, 2]] += block_x
|
||||
boxes[[1, 3]] *= h
|
||||
boxes[[1, 3]] += block_y
|
||||
for j, box in enumerate(boxes.T):
|
||||
cls = int(classes[j])
|
||||
color = color_lut[cls % len(color_lut)]
|
||||
cls = names[cls] if names else cls
|
||||
if labels or conf[j] > 0.3: # 0.3 conf thresh
|
||||
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
|
||||
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
|
||||
|
||||
# Draw image filename labels
|
||||
if paths is not None:
|
||||
label = os.path.basename(paths[i])[:40] # trim to 40 char
|
||||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
||||
lineType=cv2.LINE_AA)
|
||||
|
||||
# Image border
|
||||
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
||||
|
||||
if fname is not None:
|
||||
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
||||
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
||||
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|
||||
Image.fromarray(mosaic).save(fname) # PIL save
|
||||
return mosaic
|
||||
|
||||
|
||||
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
||||
# Plot LR simulating training for full epochs
|
||||
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
||||
y = []
|
||||
for _ in range(epochs):
|
||||
scheduler.step()
|
||||
y.append(optimizer.param_groups[0]['lr'])
|
||||
plt.plot(y, '.-', label='LR')
|
||||
plt.xlabel('epoch')
|
||||
plt.ylabel('LR')
|
||||
plt.grid()
|
||||
plt.xlim(0, epochs)
|
||||
plt.ylim(0)
|
||||
plt.tight_layout()
|
||||
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
||||
|
||||
|
||||
def plot_test_txt(): # from utils.general import *; plot_test()
|
||||
# Plot test.txt histograms
|
||||
x = np.loadtxt('test.txt', dtype=np.float32)
|
||||
box = xyxy2xywh(x[:, :4])
|
||||
cx, cy = box[:, 0], box[:, 1]
|
||||
|
||||
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
||||
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||||
ax.set_aspect('equal')
|
||||
plt.savefig('hist2d.png', dpi=300)
|
||||
|
||||
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
||||
ax[0].hist(cx, bins=600)
|
||||
ax[1].hist(cy, bins=600)
|
||||
plt.savefig('hist1d.png', dpi=200)
|
||||
|
||||
|
||||
def plot_targets_txt(): # from utils.general import *; plot_targets_txt()
|
||||
# Plot targets.txt histograms
|
||||
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
||||
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||||
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
for i in range(4):
|
||||
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
||||
ax[i].legend()
|
||||
ax[i].set_title(s[i])
|
||||
plt.savefig('targets.jpg', dpi=200)
|
||||
|
||||
|
||||
def plot_study_txt(f='study.txt', x=None): # from utils.general import *; plot_study_txt()
|
||||
# Plot study.txt generated by test.py
|
||||
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
|
||||
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
||||
for f in ['study/study_coco_yolov5%s.txt' % x for x in ['s', 'm', 'l', 'x']]:
|
||||
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
||||
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
||||
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
|
||||
for i in range(7):
|
||||
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
||||
ax[i].set_title(s[i])
|
||||
|
||||
j = y[3].argmax() + 1
|
||||
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
|
||||
label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
||||
|
||||
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
||||
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
||||
|
||||
ax2.grid()
|
||||
ax2.set_xlim(0, 30)
|
||||
ax2.set_ylim(28, 50)
|
||||
ax2.set_yticks(np.arange(30, 55, 5))
|
||||
ax2.set_xlabel('GPU Speed (ms/img)')
|
||||
ax2.set_ylabel('COCO AP val')
|
||||
ax2.legend(loc='lower right')
|
||||
plt.savefig('study_mAP_latency.png', dpi=300)
|
||||
plt.savefig(f.replace('.txt', '.png'), dpi=300)
|
||||
|
||||
|
||||
def plot_labels(labels, save_dir=''):
|
||||
# plot dataset labels
|
||||
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
||||
nc = int(c.max() + 1) # number of classes
|
||||
|
||||
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||
ax[0].set_xlabel('classes')
|
||||
ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet')
|
||||
ax[1].set_xlabel('x')
|
||||
ax[1].set_ylabel('y')
|
||||
ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
|
||||
ax[2].set_xlabel('width')
|
||||
ax[2].set_ylabel('height')
|
||||
plt.savefig(Path(save_dir) / 'labels.png', dpi=200)
|
||||
plt.close()
|
||||
|
||||
# seaborn correlogram
|
||||
try:
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||
sns.pairplot(x, corner=True, diag_kind='hist', kind='scatter', markers='o',
|
||||
plot_kws=dict(s=3, edgecolor=None, linewidth=1, alpha=0.02),
|
||||
diag_kws=dict(bins=50))
|
||||
plt.savefig(Path(save_dir) / 'labels_correlogram.png', dpi=200)
|
||||
plt.close()
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
|
||||
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.general import *; plot_evolution()
|
||||
# Plot hyperparameter evolution results in evolve.txt
|
||||
with open(yaml_file) as f:
|
||||
hyp = yaml.load(f, Loader=yaml.FullLoader)
|
||||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||
f = fitness(x)
|
||||
# weights = (f - f.min()) ** 2 # for weighted results
|
||||
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||
matplotlib.rc('font', **{'size': 8})
|
||||
for i, (k, v) in enumerate(hyp.items()):
|
||||
y = x[:, i + 7]
|
||||
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
||||
mu = y[f.argmax()] # best single result
|
||||
plt.subplot(6, 5, i + 1)
|
||||
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||||
if i % 5 != 0:
|
||||
plt.yticks([])
|
||||
print('%15s: %.3g' % (k, mu))
|
||||
plt.savefig('evolve.png', dpi=200)
|
||||
print('\nPlot saved as evolve.png')
|
||||
|
||||
|
||||
def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay()
|
||||
# Plot training 'results*.txt', overlaying train and val losses
|
||||
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
||||
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
||||
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
||||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||
n = results.shape[1] # number of rows
|
||||
x = range(start, min(stop, n) if stop else n)
|
||||
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
for i in range(5):
|
||||
for j in [i, i + 5]:
|
||||
y = results[j, x]
|
||||
ax[i].plot(x, y, marker='.', label=s[j])
|
||||
# y_smooth = butter_lowpass_filtfilt(y)
|
||||
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
|
||||
|
||||
ax[i].set_title(t[i])
|
||||
ax[i].legend()
|
||||
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
||||
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||||
|
||||
|
||||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
||||
# from utils.general import *; plot_results(save_dir='runs/train/exp0')
|
||||
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
|
||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
||||
ax = ax.ravel()
|
||||
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||||
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
||||
if bucket:
|
||||
# os.system('rm -rf storage.googleapis.com')
|
||||
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
||||
files = ['results%g.txt' % x for x in id]
|
||||
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
|
||||
os.system(c)
|
||||
else:
|
||||
files = glob.glob(str(Path(save_dir) / 'results*.txt')) + glob.glob('../../Downloads/results*.txt')
|
||||
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
|
||||
for fi, f in enumerate(files):
|
||||
try:
|
||||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||
n = results.shape[1] # number of rows
|
||||
x = range(start, min(stop, n) if stop else n)
|
||||
for i in range(10):
|
||||
y = results[i, x]
|
||||
if i in [0, 1, 2, 5, 6, 7]:
|
||||
y[y == 0] = np.nan # don't show zero loss values
|
||||
# y /= y[0] # normalize
|
||||
label = labels[fi] if len(labels) else Path(f).stem
|
||||
ax[i].plot(x, y, marker='.', label=label, linewidth=1, markersize=6)
|
||||
ax[i].set_title(s[i])
|
||||
# if i in [5, 6, 7]: # share train and val loss y axes
|
||||
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||
except Exception as e:
|
||||
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||
|
||||
fig.tight_layout()
|
||||
ax[1].legend()
|
||||
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
|
||||
|
@ -1,6 +1,4 @@
|
||||
# This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries
|
||||
# pip install --upgrade google-cloud-storage
|
||||
# from google.cloud import storage
|
||||
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
|
||||
|
||||
import os
|
||||
import platform
|
||||
|
179
utils/loss.py
Normal file
179
utils/loss.py
Normal file
@ -0,0 +1,179 @@
|
||||
# Loss functions
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from utils.general import bbox_iou
|
||||
from utils.torch_utils import is_parallel
|
||||
|
||||
|
||||
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||
# return positive, negative label smoothing BCE targets
|
||||
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||
|
||||
|
||||
class BCEBlurWithLogitsLoss(nn.Module):
|
||||
# BCEwithLogitLoss() with reduced missing label effects.
|
||||
def __init__(self, alpha=0.05):
|
||||
super(BCEBlurWithLogitsLoss, self).__init__()
|
||||
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||||
self.alpha = alpha
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
pred = torch.sigmoid(pred) # prob from logits
|
||||
dx = pred - true # reduce only missing label effects
|
||||
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||||
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||||
loss *= alpha_factor
|
||||
return loss.mean()
|
||||
|
||||
|
||||
class FocalLoss(nn.Module):
|
||||
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||
super(FocalLoss, self).__init__()
|
||||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||
self.gamma = gamma
|
||||
self.alpha = alpha
|
||||
self.reduction = loss_fcn.reduction
|
||||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
# p_t = torch.exp(-loss)
|
||||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||
|
||||
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||
loss *= alpha_factor * modulating_factor
|
||||
|
||||
if self.reduction == 'mean':
|
||||
return loss.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return loss.sum()
|
||||
else: # 'none'
|
||||
return loss
|
||||
|
||||
|
||||
def compute_loss(p, targets, model): # predictions, targets, model
|
||||
device = targets.device
|
||||
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
|
||||
h = model.hyp # hyperparameters
|
||||
|
||||
# Define criteria
|
||||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device)
|
||||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device)
|
||||
|
||||
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||
cp, cn = smooth_BCE(eps=0.0)
|
||||
|
||||
# Focal loss
|
||||
g = h['fl_gamma'] # focal loss gamma
|
||||
if g > 0:
|
||||
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||
|
||||
# Losses
|
||||
nt = 0 # number of targets
|
||||
no = len(p) # number of outputs
|
||||
balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
|
||||
for i, pi in enumerate(p): # layer index, layer predictions
|
||||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
||||
|
||||
n = b.shape[0] # number of targets
|
||||
if n:
|
||||
nt += n # cumulative targets
|
||||
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
||||
|
||||
# Regression
|
||||
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
||||
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
||||
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
|
||||
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||
lbox += (1.0 - iou).mean() # iou loss
|
||||
|
||||
# Objectness
|
||||
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||||
|
||||
# Classification
|
||||
if model.nc > 1: # cls loss (only if multiple classes)
|
||||
t = torch.full_like(ps[:, 5:], cn, device=device) # targets
|
||||
t[range(n), tcls[i]] = cp
|
||||
lcls += BCEcls(ps[:, 5:], t) # BCE
|
||||
|
||||
# Append targets to text file
|
||||
# with open('targets.txt', 'a') as file:
|
||||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||
|
||||
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
||||
|
||||
s = 3 / no # output count scaling
|
||||
lbox *= h['box'] * s
|
||||
lobj *= h['obj'] * s * (1.4 if no == 4 else 1.)
|
||||
lcls *= h['cls'] * s
|
||||
bs = tobj.shape[0] # batch size
|
||||
|
||||
loss = lbox + lobj + lcls
|
||||
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
||||
|
||||
|
||||
def build_targets(p, targets, model):
|
||||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
||||
tcls, tbox, indices, anch = [], [], [], []
|
||||
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||||
|
||||
g = 0.5 # bias
|
||||
off = torch.tensor([[0, 0],
|
||||
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||||
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||
], device=targets.device).float() * g # offsets
|
||||
|
||||
for i in range(det.nl):
|
||||
anchors = det.anchors[i]
|
||||
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||||
|
||||
# Match targets to anchors
|
||||
t = targets * gain
|
||||
if nt:
|
||||
# Matches
|
||||
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||||
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
|
||||
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||
t = t[j] # filter
|
||||
|
||||
# Offsets
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gxi = gain[[2, 3]] - gxy # inverse
|
||||
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||||
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||||
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||
t = t.repeat((5, 1, 1))[j]
|
||||
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||
else:
|
||||
t = targets[0]
|
||||
offsets = 0
|
||||
|
||||
# Define
|
||||
b, c = t[:, :2].long().T # image, class
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gwh = t[:, 4:6] # grid wh
|
||||
gij = (gxy - offsets).long()
|
||||
gi, gj = gij.T # grid xy indices
|
||||
|
||||
# Append
|
||||
a = t[:, 6].long() # anchor indices
|
||||
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||||
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||
anch.append(anchors[a]) # anchors
|
||||
tcls.append(c) # class
|
||||
|
||||
return tcls, tbox, indices, anch
|
110
utils/metrics.py
Normal file
110
utils/metrics.py
Normal file
@ -0,0 +1,110 @@
|
||||
# Model validation metrics
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
def fitness(x):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||
return (x[:, :4] * w).sum(1)
|
||||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, fname='precision-recall_curve.png'):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
tp: True positives (nparray, nx1 or nx10).
|
||||
conf: Objectness value from 0-1 (nparray).
|
||||
pred_cls: Predicted object classes (nparray).
|
||||
target_cls: True object classes (nparray).
|
||||
plot: Plot precision-recall curve at mAP@0.5
|
||||
fname: Plot filename
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
|
||||
# Sort by objectness
|
||||
i = np.argsort(-conf)
|
||||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||
|
||||
# Find unique classes
|
||||
unique_classes = np.unique(target_cls)
|
||||
|
||||
# Create Precision-Recall curve and compute AP for each class
|
||||
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
||||
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
||||
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
||||
for ci, c in enumerate(unique_classes):
|
||||
i = pred_cls == c
|
||||
n_l = (target_cls == c).sum() # number of labels
|
||||
n_p = i.sum() # number of predictions
|
||||
|
||||
if n_p == 0 or n_l == 0:
|
||||
continue
|
||||
else:
|
||||
# Accumulate FPs and TPs
|
||||
fpc = (1 - tp[i]).cumsum(0)
|
||||
tpc = tp[i].cumsum(0)
|
||||
|
||||
# Recall
|
||||
recall = tpc / (n_l + 1e-16) # recall curve
|
||||
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
||||
|
||||
# Precision
|
||||
precision = tpc / (tpc + fpc) # precision curve
|
||||
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
||||
|
||||
# AP from recall-precision curve
|
||||
for j in range(tp.shape[1]):
|
||||
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||
if j == 0:
|
||||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||
|
||||
# Compute F1 score (harmonic mean of precision and recall)
|
||||
f1 = 2 * p * r / (p + r + 1e-16)
|
||||
|
||||
if plot:
|
||||
py = np.stack(py, axis=1)
|
||||
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
|
||||
ax.plot(px, py, linewidth=0.5, color='grey') # plot(recall, precision)
|
||||
ax.plot(px, py.mean(1), linewidth=2, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||||
ax.set_xlabel('Recall')
|
||||
ax.set_ylabel('Precision')
|
||||
ax.set_xlim(0, 1)
|
||||
ax.set_ylim(0, 1)
|
||||
plt.legend()
|
||||
fig.tight_layout()
|
||||
fig.savefig(fname, dpi=200)
|
||||
|
||||
return p, r, ap, f1, unique_classes.astype('int32')
|
||||
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rbgirshick/py-faster-rcnn.
|
||||
# Arguments
|
||||
recall: The recall curve (list).
|
||||
precision: The precision curve (list).
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
|
||||
# Append sentinel values to beginning and end
|
||||
mrec = recall # np.concatenate(([0.], recall, [recall[-1] + 1E-3]))
|
||||
mpre = precision # np.concatenate(([0.], precision, [0.]))
|
||||
|
||||
# Compute the precision envelope
|
||||
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||
|
||||
# Integrate area under curve
|
||||
method = 'interp' # methods: 'continuous', 'interp'
|
||||
if method == 'interp':
|
||||
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||
else: # 'continuous'
|
||||
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||
|
||||
return ap, mpre, mrec
|
377
utils/plots.py
Normal file
377
utils/plots.py
Normal file
@ -0,0 +1,377 @@
|
||||
# Plotting utils
|
||||
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
import yaml
|
||||
from PIL import Image
|
||||
from scipy.signal import butter, filtfilt
|
||||
|
||||
from utils.general import xywh2xyxy, xyxy2xywh
|
||||
from utils.metrics import fitness
|
||||
|
||||
|
||||
def color_list():
|
||||
# Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
|
||||
def hex2rgb(h):
|
||||
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||
|
||||
return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']]
|
||||
|
||||
|
||||
def hist2d(x, y, n=100):
|
||||
# 2d histogram used in labels.png and evolve.png
|
||||
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
||||
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
||||
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
||||
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
||||
return np.log(hist[xidx, yidx])
|
||||
|
||||
|
||||
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
||||
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
||||
def butter_lowpass(cutoff, fs, order):
|
||||
nyq = 0.5 * fs
|
||||
normal_cutoff = cutoff / nyq
|
||||
return butter(order, normal_cutoff, btype='low', analog=False)
|
||||
|
||||
b, a = butter_lowpass(cutoff, fs, order=order)
|
||||
return filtfilt(b, a, data) # forward-backward filter
|
||||
|
||||
|
||||
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
|
||||
# Plots one bounding box on image img
|
||||
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
||||
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||||
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
||||
if label:
|
||||
tf = max(tl - 1, 1) # font thickness
|
||||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
||||
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
||||
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||
|
||||
|
||||
def plot_wh_methods(): # from utils.general import *; plot_wh_methods()
|
||||
# Compares the two methods for width-height anchor multiplication
|
||||
# https://github.com/ultralytics/yolov3/issues/168
|
||||
x = np.arange(-4.0, 4.0, .1)
|
||||
ya = np.exp(x)
|
||||
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
|
||||
|
||||
fig = plt.figure(figsize=(6, 3), dpi=150)
|
||||
plt.plot(x, ya, '.-', label='YOLOv3')
|
||||
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
|
||||
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
|
||||
plt.xlim(left=-4, right=4)
|
||||
plt.ylim(bottom=0, top=6)
|
||||
plt.xlabel('input')
|
||||
plt.ylabel('output')
|
||||
plt.grid()
|
||||
plt.legend()
|
||||
fig.tight_layout()
|
||||
fig.savefig('comparison.png', dpi=200)
|
||||
|
||||
|
||||
def output_to_target(output, width, height):
|
||||
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
||||
if isinstance(output, torch.Tensor):
|
||||
output = output.cpu().numpy()
|
||||
|
||||
targets = []
|
||||
for i, o in enumerate(output):
|
||||
if o is not None:
|
||||
for pred in o:
|
||||
box = pred[:4]
|
||||
w = (box[2] - box[0]) / width
|
||||
h = (box[3] - box[1]) / height
|
||||
x = box[0] / width + w / 2
|
||||
y = box[1] / height + h / 2
|
||||
conf = pred[4]
|
||||
cls = int(pred[5])
|
||||
|
||||
targets.append([i, cls, x, y, w, h, conf])
|
||||
|
||||
return np.array(targets)
|
||||
|
||||
|
||||
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
|
||||
# Plot image grid with labels
|
||||
|
||||
if isinstance(images, torch.Tensor):
|
||||
images = images.cpu().float().numpy()
|
||||
if isinstance(targets, torch.Tensor):
|
||||
targets = targets.cpu().numpy()
|
||||
|
||||
# un-normalise
|
||||
if np.max(images[0]) <= 1:
|
||||
images *= 255
|
||||
|
||||
tl = 3 # line thickness
|
||||
tf = max(tl - 1, 1) # font thickness
|
||||
bs, _, h, w = images.shape # batch size, _, height, width
|
||||
bs = min(bs, max_subplots) # limit plot images
|
||||
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||
|
||||
# Check if we should resize
|
||||
scale_factor = max_size / max(h, w)
|
||||
if scale_factor < 1:
|
||||
h = math.ceil(scale_factor * h)
|
||||
w = math.ceil(scale_factor * w)
|
||||
|
||||
colors = color_list() # list of colors
|
||||
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||
for i, img in enumerate(images):
|
||||
if i == max_subplots: # if last batch has fewer images than we expect
|
||||
break
|
||||
|
||||
block_x = int(w * (i // ns))
|
||||
block_y = int(h * (i % ns))
|
||||
|
||||
img = img.transpose(1, 2, 0)
|
||||
if scale_factor < 1:
|
||||
img = cv2.resize(img, (w, h))
|
||||
|
||||
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
|
||||
if len(targets) > 0:
|
||||
image_targets = targets[targets[:, 0] == i]
|
||||
boxes = xywh2xyxy(image_targets[:, 2:6]).T
|
||||
classes = image_targets[:, 1].astype('int')
|
||||
labels = image_targets.shape[1] == 6 # labels if no conf column
|
||||
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
|
||||
|
||||
boxes[[0, 2]] *= w
|
||||
boxes[[0, 2]] += block_x
|
||||
boxes[[1, 3]] *= h
|
||||
boxes[[1, 3]] += block_y
|
||||
for j, box in enumerate(boxes.T):
|
||||
cls = int(classes[j])
|
||||
color = colors[cls % len(colors)]
|
||||
cls = names[cls] if names else cls
|
||||
if labels or conf[j] > 0.3: # 0.3 conf thresh
|
||||
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
|
||||
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
|
||||
|
||||
# Draw image filename labels
|
||||
if paths is not None:
|
||||
label = os.path.basename(paths[i])[:40] # trim to 40 char
|
||||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
||||
lineType=cv2.LINE_AA)
|
||||
|
||||
# Image border
|
||||
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
||||
|
||||
if fname is not None:
|
||||
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
||||
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
||||
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|
||||
Image.fromarray(mosaic).save(fname) # PIL save
|
||||
return mosaic
|
||||
|
||||
|
||||
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
||||
# Plot LR simulating training for full epochs
|
||||
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
||||
y = []
|
||||
for _ in range(epochs):
|
||||
scheduler.step()
|
||||
y.append(optimizer.param_groups[0]['lr'])
|
||||
plt.plot(y, '.-', label='LR')
|
||||
plt.xlabel('epoch')
|
||||
plt.ylabel('LR')
|
||||
plt.grid()
|
||||
plt.xlim(0, epochs)
|
||||
plt.ylim(0)
|
||||
plt.tight_layout()
|
||||
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
||||
|
||||
|
||||
def plot_test_txt(): # from utils.general import *; plot_test()
|
||||
# Plot test.txt histograms
|
||||
x = np.loadtxt('test.txt', dtype=np.float32)
|
||||
box = xyxy2xywh(x[:, :4])
|
||||
cx, cy = box[:, 0], box[:, 1]
|
||||
|
||||
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
||||
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||||
ax.set_aspect('equal')
|
||||
plt.savefig('hist2d.png', dpi=300)
|
||||
|
||||
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
||||
ax[0].hist(cx, bins=600)
|
||||
ax[1].hist(cy, bins=600)
|
||||
plt.savefig('hist1d.png', dpi=200)
|
||||
|
||||
|
||||
def plot_targets_txt(): # from utils.general import *; plot_targets_txt()
|
||||
# Plot targets.txt histograms
|
||||
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
||||
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||||
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
for i in range(4):
|
||||
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
||||
ax[i].legend()
|
||||
ax[i].set_title(s[i])
|
||||
plt.savefig('targets.jpg', dpi=200)
|
||||
|
||||
|
||||
def plot_study_txt(f='study.txt', x=None): # from utils.general import *; plot_study_txt()
|
||||
# Plot study.txt generated by test.py
|
||||
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
|
||||
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
||||
for f in ['study/study_coco_yolov5%s.txt' % x for x in ['s', 'm', 'l', 'x']]:
|
||||
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
||||
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
||||
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
|
||||
for i in range(7):
|
||||
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
||||
ax[i].set_title(s[i])
|
||||
|
||||
j = y[3].argmax() + 1
|
||||
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
|
||||
label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
||||
|
||||
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
||||
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
||||
|
||||
ax2.grid()
|
||||
ax2.set_xlim(0, 30)
|
||||
ax2.set_ylim(28, 50)
|
||||
ax2.set_yticks(np.arange(30, 55, 5))
|
||||
ax2.set_xlabel('GPU Speed (ms/img)')
|
||||
ax2.set_ylabel('COCO AP val')
|
||||
ax2.legend(loc='lower right')
|
||||
plt.savefig('study_mAP_latency.png', dpi=300)
|
||||
plt.savefig(f.replace('.txt', '.png'), dpi=300)
|
||||
|
||||
|
||||
def plot_labels(labels, save_dir=''):
|
||||
# plot dataset labels
|
||||
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
||||
nc = int(c.max() + 1) # number of classes
|
||||
|
||||
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||
ax[0].set_xlabel('classes')
|
||||
ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet')
|
||||
ax[1].set_xlabel('x')
|
||||
ax[1].set_ylabel('y')
|
||||
ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
|
||||
ax[2].set_xlabel('width')
|
||||
ax[2].set_ylabel('height')
|
||||
plt.savefig(Path(save_dir) / 'labels.png', dpi=200)
|
||||
plt.close()
|
||||
|
||||
# seaborn correlogram
|
||||
try:
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||
sns.pairplot(x, corner=True, diag_kind='hist', kind='scatter', markers='o',
|
||||
plot_kws=dict(s=3, edgecolor=None, linewidth=1, alpha=0.02),
|
||||
diag_kws=dict(bins=50))
|
||||
plt.savefig(Path(save_dir) / 'labels_correlogram.png', dpi=200)
|
||||
plt.close()
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
|
||||
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.general import *; plot_evolution()
|
||||
# Plot hyperparameter evolution results in evolve.txt
|
||||
with open(yaml_file) as f:
|
||||
hyp = yaml.load(f, Loader=yaml.FullLoader)
|
||||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||
f = fitness(x)
|
||||
# weights = (f - f.min()) ** 2 # for weighted results
|
||||
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||
matplotlib.rc('font', **{'size': 8})
|
||||
for i, (k, v) in enumerate(hyp.items()):
|
||||
y = x[:, i + 7]
|
||||
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
||||
mu = y[f.argmax()] # best single result
|
||||
plt.subplot(6, 5, i + 1)
|
||||
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||||
if i % 5 != 0:
|
||||
plt.yticks([])
|
||||
print('%15s: %.3g' % (k, mu))
|
||||
plt.savefig('evolve.png', dpi=200)
|
||||
print('\nPlot saved as evolve.png')
|
||||
|
||||
|
||||
def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay()
|
||||
# Plot training 'results*.txt', overlaying train and val losses
|
||||
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
||||
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
||||
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
||||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||
n = results.shape[1] # number of rows
|
||||
x = range(start, min(stop, n) if stop else n)
|
||||
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
for i in range(5):
|
||||
for j in [i, i + 5]:
|
||||
y = results[j, x]
|
||||
ax[i].plot(x, y, marker='.', label=s[j])
|
||||
# y_smooth = butter_lowpass_filtfilt(y)
|
||||
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
|
||||
|
||||
ax[i].set_title(t[i])
|
||||
ax[i].legend()
|
||||
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
||||
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||||
|
||||
|
||||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
||||
# from utils.general import *; plot_results(save_dir='runs/train/exp0')
|
||||
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
|
||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
||||
ax = ax.ravel()
|
||||
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||||
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
||||
if bucket:
|
||||
# os.system('rm -rf storage.googleapis.com')
|
||||
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
||||
files = ['results%g.txt' % x for x in id]
|
||||
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
|
||||
os.system(c)
|
||||
else:
|
||||
files = glob.glob(str(Path(save_dir) / 'results*.txt')) + glob.glob('../../Downloads/results*.txt')
|
||||
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
|
||||
for fi, f in enumerate(files):
|
||||
try:
|
||||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||
n = results.shape[1] # number of rows
|
||||
x = range(start, min(stop, n) if stop else n)
|
||||
for i in range(10):
|
||||
y = results[i, x]
|
||||
if i in [0, 1, 2, 5, 6, 7]:
|
||||
y[y == 0] = np.nan # don't show zero loss values
|
||||
# y /= y[0] # normalize
|
||||
label = labels[fi] if len(labels) else Path(f).stem
|
||||
ax[i].plot(x, y, marker='.', label=label, linewidth=1, markersize=6)
|
||||
ax[i].set_title(s[i])
|
||||
# if i in [5, 6, 7]: # share train and val loss y axes
|
||||
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||
except Exception as e:
|
||||
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||
|
||||
fig.tight_layout()
|
||||
ax[1].legend()
|
||||
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
|
@ -1,7 +1,10 @@
|
||||
# PyTorch utils
|
||||
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from copy import deepcopy
|
||||
|
||||
import torch
|
||||
@ -13,10 +16,21 @@ import torchvision
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def init_torch_seeds(seed=0):
|
||||
torch.manual_seed(seed)
|
||||
@contextmanager
|
||||
def torch_distributed_zero_first(local_rank: int):
|
||||
"""
|
||||
Decorator to make all processes in distributed training wait for each local_master to do something.
|
||||
"""
|
||||
if local_rank not in [-1, 0]:
|
||||
torch.distributed.barrier()
|
||||
yield
|
||||
if local_rank == 0:
|
||||
torch.distributed.barrier()
|
||||
|
||||
|
||||
def init_torch_seeds(seed=0):
|
||||
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
||||
torch.manual_seed(seed)
|
||||
if seed == 0: # slower, more reproducible
|
||||
cudnn.deterministic = True
|
||||
cudnn.benchmark = False
|
||||
@ -104,8 +118,6 @@ def prune(model, amount=0.3):
|
||||
|
||||
def fuse_conv_and_bn(conv, bn):
|
||||
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||
|
||||
# init
|
||||
fusedconv = nn.Conv2d(conv.in_channels,
|
||||
conv.out_channels,
|
||||
kernel_size=conv.kernel_size,
|
||||
@ -145,8 +157,7 @@ def model_info(model, verbose=False):
|
||||
except ImportError:
|
||||
fs = ''
|
||||
|
||||
logger.info(
|
||||
'Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
|
||||
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||
|
||||
|
||||
def load_classifier(name='resnet101', n=2):
|
||||
|
Loading…
x
Reference in New Issue
Block a user