Commit Graph

9 Commits (38ff499b26b9f8bf183cd1c08746dd33d000eb59)

Author SHA1 Message Date
Glenn Jocher 6f5d6fcdaa
Robust objectness loss balancing (#2256) 2021-02-20 11:19:01 -08:00
Glenn Jocher bdd88e1ed7
YOLOv5 Segmentation Dataloader Updates (#2188)
* Update C3 module

* Update C3 module

* Update C3 module

* Update C3 module

* update

* update

* update

* update

* update

* update

* update

* update

* update

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update datasets

* update

* update

* update

* update attempt_downlaod()

* merge

* merge

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* parameterize eps

* comments

* gs-multiple

* update

* max_nms implemented

* Create one_cycle() function

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* GitHub API rate limit fix

* update

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* astuple

* epochs

* update

* update

* ComputeLoss()

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* merge

* merge

* merge

* merge

* update

* update

* update

* update

* commit=tag == tags[-1]

* Update cudnn.benchmark

* update

* update

* update

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* update

* mosaic9

* update

* update

* update

* update

* update

* update

* institute cache versioning

* only display on existing cache

* reverse cache exists booleans
2021-02-11 21:22:45 -08:00
Glenn Jocher 86897e3663
Update train.py test batch_size (#2148)
* Update train.py

* Update loss.py
2021-02-06 10:29:32 -08:00
Glenn Jocher ca9babb8e6
Add ComputeLoss() class (#1950) 2021-01-15 13:50:24 -08:00
Glenn Jocher 6ab589583c
Add colorstr() (#1887)
* Add colorful()

* update

* newline fix

* add git description

* --always

* update loss scaling

* update loss scaling 2

* rename to colorstr()
2021-01-09 15:24:18 -08:00
Glenn Jocher 69be8e738f
YOLOv5 v4.0 Release (#1837)
* Update C3 module

* Update C3 module

* Update C3 module

* Update C3 module

* update

* update

* update

* update

* update

* update

* update

* update

* update

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update datasets

* update

* update

* update

* update attempt_downlaod()

* merge

* merge

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* parameterize eps

* comments

* gs-multiple

* update

* max_nms implemented

* Create one_cycle() function

* update

* update

* update

* update

* update

* update

* update

* update study.png

* update study.png

* Update datasets.py
2021-01-04 19:54:09 -08:00
Glenn Jocher 8bc0027afc
Update loss criteria constructor (#1711) 2020-12-16 08:39:35 -08:00
yxNONG b3ceffb513
Add QFocalLoss() (#1482)
* Update loss.py

implement the quality focal loss which is a more general case of focal loss
more detail in https://arxiv.org/abs/2006.04388 

In the obj loss (or the case cls loss with label smooth), the targets is no long barely be 0 or 1 (can be 0.7), in this case, the normal focal loss is not work accurately
quality focal loss in behave the same as focal loss when the target is equal to 0 or 1, and work accurately when targets in (0, 1)

example:

targets:
tensor([[0.6225, 0.0000, 0.0000],
        [0.9000, 0.0000, 0.0000],
        [1.0000, 0.0000, 0.0000]])
___________________________
pred_prob:
tensor([[0.6225, 0.2689, 0.1192],
        [0.7773, 0.5000, 0.2227],
        [0.8176, 0.8808, 0.1978]])
____________________________
focal_loss
tensor([[0.0937, 0.0328, 0.0039],
        [0.0166, 0.1838, 0.0199],
        [0.0039, 1.3186, 0.0145]])
______________
qfocal_loss
tensor([[7.5373e-08, 3.2768e-02, 3.9179e-03],
        [4.8601e-03, 1.8380e-01, 1.9857e-02],
        [3.9233e-03, 1.3186e+00, 1.4545e-02]])
 
we can see that targets[0][0] = 0.6255 is almost the same as pred_prob[0][0] = 0.6225, 
the targets[1][0] = 0.9 is greater then pred_prob[1][0] = 0.7773 by 0.1227
however, the focal loss[0][0] = 0.0937 larger then focal loss[1][0] = 0.0166 (which against the purpose of focal loss)

for the quality focal loss , it implement the case of targets not equal to 0 or 1

* Update loss.py
2020-11-25 19:32:27 +01:00
Glenn Jocher fe341fa44d
Utils reorganization (#1392)
* Utils reorganization

* Add new utils files

* cleanup

* simplify

* reduce datasets.py

* remove evolve.sh

* loadWebcam cleanup
2020-11-14 11:50:32 +01:00