Commit Graph

808 Commits (49abc722fc4204d57e81b2f4db98f024ad6474cc)
 

Author SHA1 Message Date
Glenn Jocher 49abc722fc
Update profile_idetection() (#1727) 2020-12-18 01:19:17 -08:00
Glenn Jocher d5289b54c4
clean_str() function addition (#1674)
* clean_str() function addition

* cleanup

* add euro symbol €

* add closing exclamation (spanish)

* cleanup
2020-12-17 17:20:20 -08:00
Glenn Jocher 7e161d9774
Single class train update (#1719) 2020-12-17 12:02:03 -08:00
Glenn Jocher 6bd5e8bca7
nn.SiLU() export support (#1713) 2020-12-16 17:55:57 -08:00
Glenn Jocher c923fbff90
W&B artifacts feature addition (#1712)
* Log artifacts

* cleanup
2020-12-16 17:52:12 -08:00
Polydefkis Gkagkos 1fc9d42a64
NMS --classes 0 bug fix (#1710) 2020-12-16 08:58:51 -08:00
Glenn Jocher 8bc0027afc
Update loss criteria constructor (#1711) 2020-12-16 08:39:35 -08:00
Glenn Jocher 799724108f
Update C3 module (#1705) 2020-12-15 22:13:08 -08:00
Glenn Jocher 7947c86b57
Update COCO train postprocessing (#1702) 2020-12-15 21:50:28 -08:00
NanoCode012 035ac82ed0
Fix torch multi-GPU --device error (#1701)
* Fix torch GPU error

* Update torch_utils.py

single-line device =

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2020-12-15 20:42:14 -08:00
Glenn Jocher 69ea70cd3b
Add idetection_profile() function to plots.py (#1700) 2020-12-15 18:35:47 -08:00
Glenn Jocher e92245a38c
Simplified PyTorch hub for custom models (#1677) 2020-12-12 11:42:27 -08:00
Glenn Jocher f7a923b446
Simplified PyTorch hub for custom models (#1677) 2020-12-12 11:37:53 -08:00
Glenn Jocher 87ca35b922
Simplified PyTorch hub for custom models (#1677) 2020-12-12 11:16:57 -08:00
Glenn Jocher 54043a9fa4
Streaming --save-txt bug fix (#1672)
* Streaming --save-txt bug fix

* cleanup
2020-12-11 15:45:32 -08:00
Glenn Jocher bc52ea2d5f Profile() feature addition 2020-12-11 09:34:27 -08:00
Glenn Jocher ada90e3901
Profile() feature addition (#1673)
* Profile() feature addition

* cleanup
2020-12-11 09:30:39 -08:00
Glenn Jocher 94a7f55c4e
FReLU bias=False bug fix (#1666) 2020-12-10 13:06:15 -08:00
Glenn Jocher b2bef8f6d8
vast.ai compatability updates (#1657) 2020-12-10 06:00:47 -08:00
Glenn Jocher 2e8e02745b
vast.ai compatability updates (#1657) 2020-12-09 19:01:08 -08:00
Glenn Jocher fa8f1fb0e9
Simplify autoshape() post-process (#1653)
* Simplify autoshape() post-process

* cleanup

* cleanup
2020-12-09 07:44:06 -08:00
Glenn Jocher 84f9bb5d92
Normalized mosaic plotting bug fix (#1647) 2020-12-08 18:44:13 -08:00
Glenn Jocher 86f4247515
Hybrid auto-labelling support (#1646) 2020-12-08 18:15:39 -08:00
Glenn Jocher 0bb43953eb
Reinstate PR curve sentinel values (#1645) 2020-12-08 17:40:49 -08:00
Glenn Jocher b53c8ac179
Create codeql-analysis.yml (#1644)
* Create codeql-analysis.yml

* Update ci-testing.yml
2020-12-08 17:03:16 -08:00
Glenn Jocher 68e6ab668b
Hub device mismatch bug fix (#1619) 2020-12-06 17:53:38 +01:00
Glenn Jocher 791dadb51c
Pycocotools best.pt after COCO train (#1616)
* Pycocotools best.pt after COCO train

* cleanup
2020-12-06 14:58:33 +01:00
Glenn Jocher d929bb656c
Implement default class names (#1609) 2020-12-06 12:41:37 +01:00
Glenn Jocher efa7a915d8
Update download_weights.sh with usage example (#1613) 2020-12-06 10:09:09 +01:00
Glenn Jocher 8918e63476
Increase FLOPS robustness (#1608) 2020-12-05 11:41:34 +01:00
Glenn Jocher ba48f867ea
Add bias to Classify() (#1601) 2020-12-04 15:06:33 +01:00
Glenn Jocher f010147578
Update matplotlib.use('Agg') tight (#1583)
* Update matplotlib tight_layout=True

* udpate

* udpate

* update

* png to ps

* update

* update
2020-12-02 15:53:16 +01:00
Glenn Jocher 784feae30a
Update matplotlib svg backend (#1580) 2020-12-02 14:05:12 +01:00
SergioSanchezMontesUAM 2c99560a98
Update .gitignore datasets dir (#1577) 2020-12-02 13:01:22 +01:00
Hu Ye 577f298d9b
plot_images() scale bug fix (#1566)
fix bugs in plot_images
2020-12-01 11:29:59 +01:00
Glenn Jocher b6ed1104a6
Daemon thread plotting (#1561)
* Daemon thread plotting

* remove process_batch

* plot after print
2020-11-30 16:44:14 +01:00
Glenn Jocher 68211f72c9
FROM nvcr.io/nvidia/pytorch:20.10-py3 (#1553)
* FROM pytorch/pytorch:latest

* FROM nvcr.io/nvidia/pytorch:20.10-py3
2020-11-29 17:47:51 +01:00
Glenn Jocher cff9263490
f.read().strip() (#1551) 2020-11-29 11:59:52 +01:00
Glenn Jocher 9fa7f9f598 f.read().strip() 2020-11-29 11:58:14 +01:00
Glenn Jocher 96a84468b9
Update labels_to_image_weights() (#1545) 2020-11-28 12:25:45 +01:00
Glenn Jocher 97a5227a1a
Ignore W&B logging dir wandb/ (#1534) 2020-11-27 01:38:09 +01:00
Glenn Jocher 5dbf0c96f4
FROM nvcr.io/nvidia/pytorch:20.11-py3 2020-11-27 01:28:33 +01:00
Glenn Jocher c9798ae0e1
Update plot_study_txt() (#1533) 2020-11-26 22:18:17 +01:00
Glenn Jocher 0f2057ed33
Targets scaling bug fix (#1529) 2020-11-26 18:33:28 +01:00
Glenn Jocher 2c3efa430b
Mosaic plots bug fix (#1526) 2020-11-26 14:02:22 +01:00
Glenn Jocher 12499f1c01 --image_weights bug fix (#1524) 2020-11-26 13:25:51 +01:00
Glenn Jocher 9728e2b8ae
--image_weights bug fix (#1524) 2020-11-26 11:49:01 +01:00
Glenn Jocher e9a0ae6f19
Cache bug fix (#1513)
* Caching bug fix #1508

* np.zeros((0,5)) x2
2020-11-25 20:33:14 +01:00
yxNONG b3ceffb513
Add QFocalLoss() (#1482)
* Update loss.py

implement the quality focal loss which is a more general case of focal loss
more detail in https://arxiv.org/abs/2006.04388 

In the obj loss (or the case cls loss with label smooth), the targets is no long barely be 0 or 1 (can be 0.7), in this case, the normal focal loss is not work accurately
quality focal loss in behave the same as focal loss when the target is equal to 0 or 1, and work accurately when targets in (0, 1)

example:

targets:
tensor([[0.6225, 0.0000, 0.0000],
        [0.9000, 0.0000, 0.0000],
        [1.0000, 0.0000, 0.0000]])
___________________________
pred_prob:
tensor([[0.6225, 0.2689, 0.1192],
        [0.7773, 0.5000, 0.2227],
        [0.8176, 0.8808, 0.1978]])
____________________________
focal_loss
tensor([[0.0937, 0.0328, 0.0039],
        [0.0166, 0.1838, 0.0199],
        [0.0039, 1.3186, 0.0145]])
______________
qfocal_loss
tensor([[7.5373e-08, 3.2768e-02, 3.9179e-03],
        [4.8601e-03, 1.8380e-01, 1.9857e-02],
        [3.9233e-03, 1.3186e+00, 1.4545e-02]])
 
we can see that targets[0][0] = 0.6255 is almost the same as pred_prob[0][0] = 0.6225, 
the targets[1][0] = 0.9 is greater then pred_prob[1][0] = 0.7773 by 0.1227
however, the focal loss[0][0] = 0.0937 larger then focal loss[1][0] = 0.0166 (which against the purpose of focal loss)

for the quality focal loss , it implement the case of targets not equal to 0 or 1

* Update loss.py
2020-11-25 19:32:27 +01:00
Glenn Jocher 7d629fde05
Update README.md 2020-11-25 11:00:29 +01:00