# This file contains modules common to various models import torch import torch.nn as nn from models.common import Conv class surrogate_focus(nn.Module): # surrogate_focus wh information into c-space def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(surrogate_focus, self).__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) with torch.no_grad(): self.convsp = nn.Conv2d(3, 12, (2, 2), groups=1, bias=False, stride=(2, 2)) self.convsp.weight.data = torch.zeros(self.convsp.weight.shape).float() for i in range(4): for j in range(3): ch = i*3 + j if ch>=0 and ch<3: self.convsp.weight[ch:ch+1, j:j+1, 0, 0] = 1 elif ch>=3 and ch<6: self.convsp.weight[ch:ch+1, j:j+1, 1, 0] = 1 elif ch>=6 and ch<9: self.convsp.weight[ch:ch+1, j:j+1, 0, 1] = 1 elif ch>=9 and ch<12: self.convsp.weight[ch:ch+1, j:j+1, 1, 1] = 1 def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(self.convsp(x))