English | [įŽ€äŊ“中文](.github/README_cn.md)
CI CPU testing YOLOv5 Citation Docker Pulls
Open In Colab Open In Kaggle Join Forum

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

##
Documentation
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. ##
Quick Start Examples
Install Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.7.0**](https://www.python.org/) environment, including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). ```bash git clone https://github.com/ultralytics/yolov5 # clone cd yolov5 pip install -r requirements.txt # install ```
Inference YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). ```python import torch # Model model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom # Images img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list # Inference results = model(img) # Results results.print() # or .show(), .save(), .crop(), .pandas(), etc. ```
Inference with detect.py `detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. ```bash python detect.py --source 0 # webcam img.jpg # image vid.mp4 # video path/ # directory 'path/*.jpg' # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream ```
Training The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB. ```bash python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128 yolov5s 64 yolov5m 40 yolov5l 24 yolov5x 16 ```
Tutorials - [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED - [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  â˜˜ī¸ RECOMMENDED - [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) - [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW - [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀 - [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) - [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) - [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) - [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) - [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) - [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW - [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) - [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW - [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW - [Deci Platform](https://github.com/ultralytics/yolov5/wiki/Deci-Platform) 🌟 NEW
##
Environments
Get started in seconds with our verified environments. Click each icon below for details.
##
Integrations
|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases |:-:|:-:|:-:|:-:| |Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) ##
Why YOLOv5

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand) - **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536. - **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32. - **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8. - **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
### Pretrained Checkpoints | Model | size
(pixels) | mAPval
0.5:0.95 | mAPval
0.5 | Speed
CPU b1
(ms) | Speed
V100 b1
(ms) | Speed
V100 b32
(ms) | params
(M) | FLOPs
@640 (B) | |------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------| | [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** | | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 | | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 | | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 | | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 | | | | | | | | | | | | [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 | | [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 | | [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 | | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 | | [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt)
+ [TTA][TTA] | 1280
1536 | 55.0
**55.8** | 72.7
**72.7** | 3136
- | 26.2
- | 19.4
- | 140.7
- | 209.8
- |
Table Notes (click to expand) - All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml). - **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` - **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.
Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1` - **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.
Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
##
Contribute
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors! ##
Contact
For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
[assets]: https://github.com/ultralytics/yolov5/releases [tta]: https://github.com/ultralytics/yolov5/issues/303