# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license """ Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release. Usage - Single-GPU training: $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended) $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch Usage - Multi-GPU DDP training: $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3 Models: https://github.com/ultralytics/yolov5/tree/master/models Datasets: https://github.com/ultralytics/yolov5/tree/master/data Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data """ import argparse import math import os import random import subprocess import sys import time from copy import deepcopy from datetime import datetime, timedelta from pathlib import Path import torch_tpu try: import comet_ml # must be imported before torch (if installed) except ImportError: comet_ml = None import numpy as np import torch import torch.distributed as dist import torch.nn as nn import yaml from torch.optim import lr_scheduler from tqdm import tqdm FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative import val as validate # for end-of-epoch mAP from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.autobatch import check_train_batch_size from utils.callbacks import Callbacks from utils.dataloaders import create_dataloader from utils.downloads import attempt_download, is_url from utils.general import ( LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info, check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save, ) from utils.loggers import LOGGERS, Loggers from utils.loggers.comet.comet_utils import check_comet_resume from utils.loss import ComputeLoss from utils.metrics import fitness from utils.plots import plot_evolve from utils.torch_utils import ( EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, smart_resume, torch_distributed_zero_first, ) LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv("RANK", -1)) WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1)) GIT_INFO = check_git_info() # from tpu_mlir import aot_backend import torch._dynamo.config from torch._functorch.aot_autograd import aot_export_module from tpu_mlir.python.tools.train.tpu_mlir_jit import aot_backend class JitNet(nn.Module): def __init__(self, net, loss_fn): super().__init__() self.net = net self.loss_fn = loss_fn def forward(self, x, y): predict = self.net(x) loss, loss_item = self.loss_fn(predict, y) return loss, loss_item.detach() def _get_disc_decomp(): from torch._decomp import get_decompositions aten = torch.ops.aten decompositions_dict = get_decompositions( [ aten.gelu, aten.gelu_backward, aten.native_group_norm_backward, # aten.native_layer_norm, aten.native_layer_norm_backward, # aten.std_mean.correction, # aten._softmax, aten._softmax_backward_data, aten.tanh_backward, aten.slice_backward, aten.select_backward, aten.embedding_dense_backward, aten.sigmoid_backward, aten.nll_loss_backward, aten._log_softmax_backward_data, aten.nll_loss_forward, ] ) return decompositions_dict tensor_idx = 0 features_out_hook = {} def hook(module, fea_in, fea_out): global features_out_hook, tensor_idx if isinstance(fea_out, torch.Tensor): features_out_hook[f"f_{tensor_idx}"] = fea_out.detach().numpy() tensor_idx += 1 return None def convert_module_fx( submodule_name: str, module: torch.fx.GraphModule, args={}, bwd_graph: bool = False, para_shape: list = [], ): c = fx2mlir(submodule_name, args, bwd_graph, para_shape) return c.convert(module) class SophonJointCompile: def __init__(self, model, example_inputs, trace_joint=True, output_loss_index=0, args=None): fx_g, signature = aot_export_module( model, example_inputs, trace_joint=trace_joint, output_loss_index=0, decompositions=_get_disc_decomp() ) fx_g.to_folder("yolov5sc", "joint") breakpoint() def fx_convert_bmodel(self): name = f"test_{args.model}_joint_{args.batch}" convert_module_fx(name, self.fx_g, self.args, False) def train(hyp, opt, device, callbacks): """ Train a YOLOv5 model on a custom dataset using specified hyperparameters, options, and device, managing datasets, model architecture, loss computation, and optimizer steps. Args: hyp (str | dict): Path to the hyperparameters YAML file or a dictionary of hyperparameters. opt (argparse.Namespace): Parsed command-line arguments containing training options. device (torch.device): Device on which training occurs, e.g., 'cuda' or 'cpu'. callbacks (Callbacks): Callback functions for various training events. Returns: None Models and datasets download automatically from the latest YOLOv5 release. Example: Single-GPU training: ```bash $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended) $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch ``` Multi-GPU DDP training: ```bash $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3 ``` For more usage details, refer to: - Models: https://github.com/ultralytics/yolov5/tree/master/models - Datasets: https://github.com/ultralytics/yolov5/tree/master/data - Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data """ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = ( Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, ) callbacks.run("on_pretrain_routine_start") # Directories w = save_dir / "weights" # weights dir (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir last, best = w / "last.pt", w / "best.pt" # Hyperparameters if isinstance(hyp, str): with open(hyp, errors="ignore") as f: hyp = yaml.safe_load(f) # load hyps dict LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items())) opt.hyp = hyp.copy() # for saving hyps to checkpoints # Save run settings if not evolve: yaml_save(save_dir / "hyp.yaml", hyp) yaml_save(save_dir / "opt.yaml", vars(opt)) # Loggers data_dict = None if RANK in {-1, 0}: include_loggers = list(LOGGERS) if getattr(opt, "ndjson_console", False): include_loggers.append("ndjson_console") if getattr(opt, "ndjson_file", False): include_loggers.append("ndjson_file") loggers = Loggers( save_dir=save_dir, weights=weights, opt=opt, hyp=hyp, logger=LOGGER, include=tuple(include_loggers), ) # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Process custom dataset artifact link data_dict = loggers.remote_dataset if resume: # If resuming runs from remote artifact weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Config plots = not evolve and not opt.noplots # create plots cuda = device.type != "cpu" init_seeds(opt.seed + 1 + RANK, deterministic=True) with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None train_path, val_path = data_dict["train"], data_dict["val"] nc = 1 if single_cls else int(data_dict["nc"]) # number of classes names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] # class names is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") # COCO dataset # Model check_suffix(weights, ".pt") # check weights pretrained = weights.endswith(".pt") if pretrained: with torch_distributed_zero_first(LOCAL_RANK): weights = attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location="cpu") # load checkpoint to CPU to avoid CUDA memory leak model = Model(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] # exclude keys csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create amp = check_amp(model) # check AMP # Freeze freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) if any(x in k for x in freeze): LOGGER.info(f"freezing {k}") v.requires_grad = False # Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz, amp) loggers.on_params_update({"batch_size": batch_size}) # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"]) # Scheduler if opt.cos_lr: lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf'] else: def lf(x): """Linear learning rate scheduler function with decay calculated by epoch proportion.""" return (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] # linear scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in {-1, 0} else None # Resume best_fitness, start_epoch = 0.0, 0 if pretrained: if resume: best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) del ckpt, csd # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning( "WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n" "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started." ) model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info("Using SyncBatchNorm()") # Trainloader train_loader, dataset = create_dataloader( train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == "val" else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr("train: "), shuffle=False, seed=opt.seed, ) labels = np.concatenate(dataset.labels, 0) mlc = int(labels[:, 0].max()) # max label class assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}" # Process 0 if RANK in {-1, 0}: val_loader = create_dataloader( val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr("val: "), )[0] if not resume: if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) # run AutoAnchor model.half().float() # pre-reduce anchor precision callbacks.run("on_pretrain_routine_end", labels, names) # DDP mode if cuda and RANK != -1: model = smart_DDP(model) # Model attributes nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) hyp["box"] *= 3 / nl # scale to layers hyp["cls"] *= nc / 80 * 3 / nl # scale to classes and layers hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers hyp["label_smoothing"] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nb = len(train_loader) # number of batches nw = max(round(hyp["warmup_epochs"] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move if opt.device == "tpu": scaler = torch_tpu.tpu.amp.GradScaler(enabled=True, allow_fp16=True) elif opt.device == "cpu": scaler = None else: scaler = torch.cuda.amp.GradScaler(enabled=amp) stopper, stop = EarlyStopping(patience=opt.patience), False compute_loss = ComputeLoss(model) # init loss class callbacks.run("on_train_start") LOGGER.info( f"Image sizes {imgsz} train, {imgsz} val\n" f"Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n" f"Logging results to {colorstr('bold', save_dir)}\n" f"Starting training for {epochs} epochs..." ) hook_handles = [] # dump_cuda_ref = True dump_cuda_ref = False if dump_cuda_ref: for name, child in model.named_modules(): hd = child.register_forward_hook(hook=hook) hook_handles.append(hd) for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ callbacks.run("on_train_epoch_start") model.train() # Update image weights (optional, single-GPU only) if opt.image_weights: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info(("\n" + "%11s" * 7) % ("Epoch", "GPU_mem", "box_loss", "obj_loss", "cls_loss", "Instances", "Size")) if RANK in {-1, 0}: pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar optimizer.zero_grad() compiled = True joint = False if compiled: if joint: zwyjit = JitNet(model, compute_loss) model_opt = torch.compile(zwyjit, backend=aot_backend, dynamic=None, fullgraph=False) else: model_opt = torch.compile(model, backend=aot_backend, dynamic=None, fullgraph=False) for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- callbacks.run("on_train_batch_start") ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)]) if "momentum" in x: x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]) # Multi-scale if opt.multi_scale: sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # Forward with torch.cuda.amp.autocast(amp): # from torch._subclasses import FakeTensorMode # fake_mode = FakeTensorMode(allow_non_fake_inputs=True) # with fake_mode: # zwyjit = JitNet(model, compute_loss) # fx_g, signature = aot_export_module( # zwyjit, [imgs, targets], trace_joint=True, output_loss_index=0, decompositions=_get_disc_decomp() # ) # print('fx_g:') # fx_g.graph.print_tabular() # print('signature:', signature) # exit(0) if dump_cuda_ref: pred = model(imgs) global features_out_hook features_out_hook["data"] = imgs.detach().numpy() for name, param in model.named_parameters(): features_out_hook[name] = param.detach().numpy() np.savez("layer_outputs.npz", **features_out_hook) for hd in hook_handles: hd.remove() exit(0) else: if compiled: if joint: loss, loss_items = model_opt(imgs, targets.to(device)) # forward else: pred = model_opt(imgs) loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size else: pred = model(imgs) loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4.0 # Backward if opt.device == "tpu": loss = loss.to(device) # print('old loss:', loss, loss.device) # total_loss = 0.2666 # loss.data.copy_(total_loss) print("loss:", loss, loss.device) if scaler is None: loss.backward() else: scaler.scale(loss).backward() # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html if ni - last_opt_step >= accumulate: scaler.unscale_(optimizer) # unscale gradients torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in {-1, 0}: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = f"{torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0:.3g}G" # (GB) pbar.set_description( ("%11s" * 2 + "%11.4g" * 5) % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1]) ) callbacks.run("on_train_batch_end", model, ni, imgs, targets, paths, list(mloss)) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x["lr"] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in {-1, 0}: # mAP callbacks.run("on_train_epoch_end", epoch=epoch) ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"]) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if not noval or final_epoch: # Calculate mAP results, maps, _ = validate.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, half=amp, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss, ) # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] stop = stopper(epoch=epoch, fitness=fi) # early stop check if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = { "epoch": epoch, "best_fitness": best_fitness, "model": deepcopy(de_parallel(model)).half(), "ema": deepcopy(ema.ema).half(), "updates": ema.updates, "optimizer": optimizer.state_dict(), "opt": vars(opt), "git": GIT_INFO, # {remote, branch, commit} if a git repo "date": datetime.now().isoformat(), } # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if opt.save_period > 0 and epoch % opt.save_period == 0: torch.save(ckpt, w / f"epoch{epoch}.pt") del ckpt callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi) # EarlyStopping if RANK != -1: # if DDP training broadcast_list = [stop if RANK == 0 else None] dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks if RANK != 0: stop = broadcast_list[0] if stop: break # must break all DDP ranks # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in {-1, 0}: LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.") for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f"\nValidating {f}...") results, _, _ = validate.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=plots, callbacks=callbacks, compute_loss=compute_loss, ) # val best model with plots if is_coco: callbacks.run("on_fit_epoch_end", list(mloss) + list(results) + lr, epoch, best_fitness, fi) callbacks.run("on_train_end", last, best, epoch, results) torch.cuda.empty_cache() return results def parse_opt(known=False): """ Parse command-line arguments for YOLOv5 training, validation, and testing. Args: known (bool, optional): If True, parses known arguments, ignoring the unknown. Defaults to False. Returns: (argparse.Namespace): Parsed command-line arguments containing options for YOLOv5 execution. Example: ```python from ultralytics.yolo import parse_opt opt = parse_opt() print(opt) ``` Links: - Models: https://github.com/ultralytics/yolov5/tree/master/models - Datasets: https://github.com/ultralytics/yolov5/tree/master/data - Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data """ parser = argparse.ArgumentParser() parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path") parser.add_argument("--cfg", type=str, default="", help="model.yaml path") parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path") parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path") parser.add_argument("--epochs", type=int, default=100, help="total training epochs") parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch") parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)") parser.add_argument("--rect", action="store_true", help="rectangular training") parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training") parser.add_argument("--nosave", action="store_true", help="only save final checkpoint") parser.add_argument("--noval", action="store_true", help="only validate final epoch") parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor") parser.add_argument("--noplots", action="store_true", help="save no plot files") parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations") parser.add_argument( "--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population" ) parser.add_argument("--resume_evolve", type=str, default=None, help="resume evolve from last generation") parser.add_argument("--bucket", type=str, default="", help="gsutil bucket") parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk") parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu or tpu") parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%") parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class") parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer") parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode") parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name") parser.add_argument("--name", default="exp", help="save to project/name") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") parser.add_argument("--quad", action="store_true", help="quad dataloader") parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler") parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon") parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)") parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2") parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)") parser.add_argument("--seed", type=int, default=0, help="Global training seed") parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify") # Logger arguments parser.add_argument("--entity", default=None, help="Entity") parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='Upload data, "val" option') parser.add_argument("--bbox_interval", type=int, default=-1, help="Set bounding-box image logging interval") parser.add_argument("--artifact_alias", type=str, default="latest", help="Version of dataset artifact to use") # NDJSON logging parser.add_argument("--ndjson-console", action="store_true", help="Log ndjson to console") parser.add_argument("--ndjson-file", action="store_true", help="Log ndjson to file") parser.add_argument("--debug_cmd", type=str, default="", help="debug_cmd") return parser.parse_known_args()[0] if known else parser.parse_args() def main(opt, callbacks=Callbacks()): """ Runs the main entry point for training or hyperparameter evolution with specified options and optional callbacks. Args: opt (argparse.Namespace): The command-line arguments parsed for YOLOv5 training and evolution. callbacks (ultralytics.utils.callbacks.Callbacks, optional): Callback functions for various training stages. Defaults to Callbacks(). Returns: None Note: For detailed usage, refer to: https://github.com/ultralytics/yolov5/tree/master/models """ if RANK in {-1, 0}: print_args(vars(opt)) check_git_status() check_requirements(ROOT / "requirements.txt") # Resume (from specified or most recent last.pt) if opt.resume and not check_comet_resume(opt) and not opt.evolve: last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) opt_yaml = last.parent.parent / "opt.yaml" # train options yaml opt_data = opt.data # original dataset if opt_yaml.is_file(): with open(opt_yaml, errors="ignore") as f: d = yaml.safe_load(f) else: d = torch.load(last, map_location="cpu")["opt"] opt = argparse.Namespace(**d) # replace opt.cfg, opt.weights, opt.resume = "", str(last), True # reinstate if is_url(opt_data): opt.data = check_file(opt_data) # avoid HUB resume auth timeout else: opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = ( check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project), ) # checks assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified" if opt.evolve: if opt.project == str(ROOT / "runs/train"): # if default project name, rename to runs/evolve opt.project = str(ROOT / "runs/evolve") opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume if opt.name == "cfg": opt.name = Path(opt.cfg).stem # use model.yaml as name opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # DDP mode device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: msg = "is not compatible with YOLOv5 Multi-GPU DDP training" assert not opt.image_weights, f"--image-weights {msg}" assert not opt.evolve, f"--evolve {msg}" assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size" assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE" assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command" torch.cuda.set_device(LOCAL_RANK) device = torch.device("cuda", LOCAL_RANK) dist.init_process_group( backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=10800) ) # Train if not opt.evolve: train(opt.hyp, opt, device, callbacks) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (including this hyperparameter True-False, lower_limit, upper_limit) meta = { "lr0": (False, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) "lrf": (False, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) "momentum": (False, 0.6, 0.98), # SGD momentum/Adam beta1 "weight_decay": (False, 0.0, 0.001), # optimizer weight decay "warmup_epochs": (False, 0.0, 5.0), # warmup epochs (fractions ok) "warmup_momentum": (False, 0.0, 0.95), # warmup initial momentum "warmup_bias_lr": (False, 0.0, 0.2), # warmup initial bias lr "box": (False, 0.02, 0.2), # box loss gain "cls": (False, 0.2, 4.0), # cls loss gain "cls_pw": (False, 0.5, 2.0), # cls BCELoss positive_weight "obj": (False, 0.2, 4.0), # obj loss gain (scale with pixels) "obj_pw": (False, 0.5, 2.0), # obj BCELoss positive_weight "iou_t": (False, 0.1, 0.7), # IoU training threshold "anchor_t": (False, 2.0, 8.0), # anchor-multiple threshold "anchors": (False, 2.0, 10.0), # anchors per output grid (0 to ignore) "fl_gamma": (False, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) "hsv_h": (True, 0.0, 0.1), # image HSV-Hue augmentation (fraction) "hsv_s": (True, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) "hsv_v": (True, 0.0, 0.9), # image HSV-Value augmentation (fraction) "degrees": (True, 0.0, 45.0), # image rotation (+/- deg) "translate": (True, 0.0, 0.9), # image translation (+/- fraction) "scale": (True, 0.0, 0.9), # image scale (+/- gain) "shear": (True, 0.0, 10.0), # image shear (+/- deg) "perspective": (True, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 "flipud": (True, 0.0, 1.0), # image flip up-down (probability) "fliplr": (True, 0.0, 1.0), # image flip left-right (probability) "mosaic": (True, 0.0, 1.0), # image mosaic (probability) "mixup": (True, 0.0, 1.0), # image mixup (probability) "copy_paste": (True, 0.0, 1.0), # segment copy-paste (probability) } # GA configs pop_size = 50 mutation_rate_min = 0.01 mutation_rate_max = 0.5 crossover_rate_min = 0.5 crossover_rate_max = 1 min_elite_size = 2 max_elite_size = 5 tournament_size_min = 2 tournament_size_max = 10 with open(opt.hyp, errors="ignore") as f: hyp = yaml.safe_load(f) # load hyps dict if "anchors" not in hyp: # anchors commented in hyp.yaml hyp["anchors"] = 3 if opt.noautoanchor: del hyp["anchors"], meta["anchors"] opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv" if opt.bucket: # download evolve.csv if exists subprocess.run( [ "gsutil", "cp", f"gs://{opt.bucket}/evolve.csv", str(evolve_csv), ] ) # Delete the items in meta dictionary whose first value is False del_ = [item for item, value_ in meta.items() if value_[0] is False] hyp_GA = hyp.copy() # Make a copy of hyp dictionary for item in del_: del meta[item] # Remove the item from meta dictionary del hyp_GA[item] # Remove the item from hyp_GA dictionary # Set lower_limit and upper_limit arrays to hold the search space boundaries lower_limit = np.array([meta[k][1] for k in hyp_GA.keys()]) upper_limit = np.array([meta[k][2] for k in hyp_GA.keys()]) # Create gene_ranges list to hold the range of values for each gene in the population gene_ranges = [(lower_limit[i], upper_limit[i]) for i in range(len(upper_limit))] # Initialize the population with initial_values or random values initial_values = [] # If resuming evolution from a previous checkpoint if opt.resume_evolve is not None: assert os.path.isfile(ROOT / opt.resume_evolve), "evolve population path is wrong!" with open(ROOT / opt.resume_evolve, errors="ignore") as f: evolve_population = yaml.safe_load(f) for value in evolve_population.values(): value = np.array([value[k] for k in hyp_GA.keys()]) initial_values.append(list(value)) # If not resuming from a previous checkpoint, generate initial values from .yaml files in opt.evolve_population else: yaml_files = [f for f in os.listdir(opt.evolve_population) if f.endswith(".yaml")] for file_name in yaml_files: with open(os.path.join(opt.evolve_population, file_name)) as yaml_file: value = yaml.safe_load(yaml_file) value = np.array([value[k] for k in hyp_GA.keys()]) initial_values.append(list(value)) # Generate random values within the search space for the rest of the population if initial_values is None: population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size)] elif pop_size > 1: population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size - len(initial_values))] for initial_value in initial_values: population = [initial_value] + population # Run the genetic algorithm for a fixed number of generations list_keys = list(hyp_GA.keys()) for generation in range(opt.evolve): if generation >= 1: save_dict = {} for i in range(len(population)): little_dict = {list_keys[j]: float(population[i][j]) for j in range(len(population[i]))} save_dict[f"gen{str(generation)}number{str(i)}"] = little_dict with open(save_dir / "evolve_population.yaml", "w") as outfile: yaml.dump(save_dict, outfile, default_flow_style=False) # Adaptive elite size elite_size = min_elite_size + int((max_elite_size - min_elite_size) * (generation / opt.evolve)) # Evaluate the fitness of each individual in the population fitness_scores = [] for individual in population: for key, value in zip(hyp_GA.keys(), individual): hyp_GA[key] = value hyp.update(hyp_GA) results = train(hyp.copy(), opt, device, callbacks) callbacks = Callbacks() # Write mutation results keys = ( "metrics/precision", "metrics/recall", "metrics/mAP_0.5", "metrics/mAP_0.5:0.95", "val/box_loss", "val/obj_loss", "val/cls_loss", ) print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket) fitness_scores.append(results[2]) # Select the fittest individuals for reproduction using adaptive tournament selection selected_indices = [] for _ in range(pop_size - elite_size): # Adaptive tournament size tournament_size = max( max(2, tournament_size_min), int(min(tournament_size_max, pop_size) - (generation / (opt.evolve / 10))), ) # Perform tournament selection to choose the best individual tournament_indices = random.sample(range(pop_size), tournament_size) tournament_fitness = [fitness_scores[j] for j in tournament_indices] winner_index = tournament_indices[tournament_fitness.index(max(tournament_fitness))] selected_indices.append(winner_index) # Add the elite individuals to the selected indices elite_indices = [i for i in range(pop_size) if fitness_scores[i] in sorted(fitness_scores)[-elite_size:]] selected_indices.extend(elite_indices) # Create the next generation through crossover and mutation next_generation = [] for _ in range(pop_size): parent1_index = selected_indices[random.randint(0, pop_size - 1)] parent2_index = selected_indices[random.randint(0, pop_size - 1)] # Adaptive crossover rate crossover_rate = max( crossover_rate_min, min(crossover_rate_max, crossover_rate_max - (generation / opt.evolve)) ) if random.uniform(0, 1) < crossover_rate: crossover_point = random.randint(1, len(hyp_GA) - 1) child = population[parent1_index][:crossover_point] + population[parent2_index][crossover_point:] else: child = population[parent1_index] # Adaptive mutation rate mutation_rate = max( mutation_rate_min, min(mutation_rate_max, mutation_rate_max - (generation / opt.evolve)) ) for j in range(len(hyp_GA)): if random.uniform(0, 1) < mutation_rate: child[j] += random.uniform(-0.1, 0.1) child[j] = min(max(child[j], gene_ranges[j][0]), gene_ranges[j][1]) next_generation.append(child) # Replace the old population with the new generation population = next_generation # Print the best solution found best_index = fitness_scores.index(max(fitness_scores)) best_individual = population[best_index] print("Best solution found:", best_individual) # Plot results plot_evolve(evolve_csv) LOGGER.info( f"Hyperparameter evolution finished {opt.evolve} generations\n" f"Results saved to {colorstr('bold', save_dir)}\n" f"Usage example: $ python train.py --hyp {evolve_yaml}" ) def generate_individual(input_ranges, individual_length): """ Generate an individual with random hyperparameters within specified ranges. Args: input_ranges (list[tuple[float, float]]): List of tuples where each tuple contains the lower and upper bounds for the corresponding gene (hyperparameter). individual_length (int): The number of genes (hyperparameters) in the individual. Returns: list[float]: A list representing a generated individual with random gene values within the specified ranges. Example: ```python input_ranges = [(0.01, 0.1), (0.1, 1.0), (0.9, 2.0)] individual_length = 3 individual = generate_individual(input_ranges, individual_length) print(individual) # Output: [0.035, 0.678, 1.456] (example output) ``` Note: The individual returned will have a length equal to `individual_length`, with each gene value being a floating-point number within its specified range in `input_ranges`. """ individual = [] for i in range(individual_length): lower_bound, upper_bound = input_ranges[i] individual.append(random.uniform(lower_bound, upper_bound)) return individual def run(**kwargs): """ Execute YOLOv5 training with specified options, allowing optional overrides through keyword arguments. Args: weights (str, optional): Path to initial weights. Defaults to ROOT / 'yolov5s.pt'. cfg (str, optional): Path to model YAML configuration. Defaults to an empty string. data (str, optional): Path to dataset YAML configuration. Defaults to ROOT / 'data/coco128.yaml'. hyp (str, optional): Path to hyperparameters YAML configuration. Defaults to ROOT / 'data/hyps/hyp.scratch-low.yaml'. epochs (int, optional): Total number of training epochs. Defaults to 100. batch_size (int, optional): Total batch size for all GPUs. Use -1 for automatic batch size determination. Defaults to 16. imgsz (int, optional): Image size (pixels) for training and validation. Defaults to 640. rect (bool, optional): Use rectangular training. Defaults to False. resume (bool | str, optional): Resume most recent training with an optional path. Defaults to False. nosave (bool, optional): Only save the final checkpoint. Defaults to False. noval (bool, optional): Only validate at the final epoch. Defaults to False. noautoanchor (bool, optional): Disable AutoAnchor. Defaults to False. noplots (bool, optional): Do not save plot files. Defaults to False. evolve (int, optional): Evolve hyperparameters for a specified number of generations. Use 300 if provided without a value. evolve_population (str, optional): Directory for loading population during evolution. Defaults to ROOT / 'data/ hyps'. resume_evolve (str, optional): Resume hyperparameter evolution from the last generation. Defaults to None. bucket (str, optional): gsutil bucket for saving checkpoints. Defaults to an empty string. cache (str, optional): Cache image data in 'ram' or 'disk'. Defaults to None. image_weights (bool, optional): Use weighted image selection for training. Defaults to False. device (str, optional): CUDA device identifier, e.g., '0', '0,1,2,3', or 'cpu'. Defaults to an empty string. multi_scale (bool, optional): Use multi-scale training, varying image size by ±50%. Defaults to False. single_cls (bool, optional): Train with multi-class data as single-class. Defaults to False. optimizer (str, optional): Optimizer type, choices are ['SGD', 'Adam', 'AdamW']. Defaults to 'SGD'. sync_bn (bool, optional): Use synchronized BatchNorm, only available in DDP mode. Defaults to False. workers (int, optional): Maximum dataloader workers per rank in DDP mode. Defaults to 8. project (str, optional): Directory for saving training runs. Defaults to ROOT / 'runs/train'. name (str, optional): Name for saving the training run. Defaults to 'exp'. exist_ok (bool, optional): Allow existing project/name without incrementing. Defaults to False. quad (bool, optional): Use quad dataloader. Defaults to False. cos_lr (bool, optional): Use cosine learning rate scheduler. Defaults to False. label_smoothing (float, optional): Label smoothing epsilon value. Defaults to 0.0. patience (int, optional): Patience for early stopping, measured in epochs without improvement. Defaults to 100. freeze (list, optional): Layers to freeze, e.g., backbone=10, first 3 layers = [0, 1, 2]. Defaults to [0]. save_period (int, optional): Frequency in epochs to save checkpoints. Disabled if < 1. Defaults to -1. seed (int, optional): Global training random seed. Defaults to 0. local_rank (int, optional): Automatic DDP Multi-GPU argument. Do not modify. Defaults to -1. Returns: None: The function initiates YOLOv5 training or hyperparameter evolution based on the provided options. Examples: ```python import train train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') ``` Notes: - Models: https://github.com/ultralytics/yolov5/tree/master/models - Datasets: https://github.com/ultralytics/yolov5/tree/master/data - Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data """ opt = parse_opt(True) for k, v in kwargs.items(): setattr(opt, k, v) main(opt) return opt # import torch._dynamo # import logging # logger = logging.getLogger("torch._dynamo") # logger.setLevel(logging.DEBUG) # console_handler = logging.StreamHandler() # console_handler.setLevel(logging.DEBUG) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # console_handler.setFormatter(formatter) # logger.addHandler(console_handler) if __name__ == "__main__": opt = parse_opt() # print_ori_fx_graph/dump_fx_graph/skip_tpu_compile/dump_bmodel_input import tpu_mlir tpu_mlir.python.tools.train.config.debug_cmd = opt.debug_cmd tpu_mlir.python.tools.train.config.compile_opt = 2 # tpu_mlir.python.tools.train.config.only_compile_graph_id = 1 # tpu_mlir.python.tools.train.config.run_on_cmodel = False if opt.device == 'tpu' else True tpu_mlir.python.tools.train.config.run_on_cmodel = True tpu_mlir.python.tools.train.config.print_config_info() # torch._dynamo.config.suppress_errors = True main(opt)