# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Run YOLOv5 classification inference on images, videos, directories, and globs. Usage - sources: $ python classify/predict.py --weights yolov5s.pt --source img.jpg # image vid.mp4 # video path/ # directory 'path/*.jpg' # glob Usage - formats: $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch yolov5s-cls.torchscript # TorchScript yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s-cls.xml # OpenVINO yolov5s-cls.engine # TensorRT yolov5s-cls.mlmodel # CoreML (macOS-only) yolov5s-cls_saved_model # TensorFlow SavedModel yolov5s-cls.pb # TensorFlow GraphDef yolov5s-cls.tflite # TensorFlow Lite yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU """ import argparse import os import sys from pathlib import Path import torch.nn.functional as F FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.augmentations import classify_transforms from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages from utils.general import LOGGER, Profile, check_file, check_requirements, colorstr, increment_path, print_args from utils.torch_utils import select_device, smart_inference_mode @smart_inference_mode() def run( weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) source=ROOT / 'data/images', # file/dir/URL/glob imgsz=224, # inference size device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference project=ROOT / 'runs/predict-cls', # save to project/name name='exp', # save to project/name exist_ok=False, # existing project/name ok, do not increment ): source = str(source) is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) if is_url and is_file: source = check_file(source) # download dt = Profile(), Profile(), Profile() device = select_device(device) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run save_dir.mkdir(parents=True, exist_ok=True) # make dir # Load model model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) model.warmup(imgsz=(1, 3, imgsz, imgsz)) # warmup dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz)) for seen, (path, im, im0s, vid_cap, s) in enumerate(dataset): # Image with dt[0]: im = im.unsqueeze(0).to(device) im = im.half() if model.fp16 else im.float() # Inference with dt[1]: results = model(im) # Post-process with dt[2]: p = F.softmax(results, dim=1) # probabilities i = p.argsort(1, descending=True)[:, :5].squeeze().tolist() # top 5 indices # if save: # imshow_cls(im, f=save_dir / Path(path).name, verbose=True) LOGGER.info( f"{s}{imgsz}x{imgsz} {', '.join(f'{model.names[j]} {p[0, j]:.2f}' for j in i)}, {dt[1].dt * 1E3:.1f}ms") # Print results t = tuple(x.t / (seen + 1) * 1E3 for x in dt) # speeds per image shape = (1, 3, imgsz, imgsz) LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") return p def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)') parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save to project/name') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') opt = parser.parse_args() print_args(vars(opt)) return opt def main(opt): check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)