<div align="center">
<p>
   <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
   <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
   <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
   <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
   <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
   <br>
   <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
   <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
   <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
   <a href="https://github.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.linkedin.com/company/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://twitter.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://youtube.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.facebook.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.instagram.com/ultralytics/">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
   </a>
</div>

<br>
<p>
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
 open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>

<!-- 
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->

</div>

## <div align="center">Documentation</div>

See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.

## <div align="center">Quick Start Examples</div>

<details open>
<summary>Install</summary>

[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->

```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```

</details>

<details open>
<summary>Inference</summary>

Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).

```python
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
```

</details>



<details>
<summary>Inference with detect.py</summary>

`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.

```bash
$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
```

</details>

<details>
<summary>Training</summary>

Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).

```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16
```

<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">

</details>  

<details open>
<summary>Tutorials</summary>

* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️
  RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518)&nbsp; 🌟 NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)

</details>

## <div align="center">Environments and Integrations</div>

Get started in seconds with our verified environments and integrations,
including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment
logging. Click each icon below for details.

<div align="center">
    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
    </a>
    <a href="https://www.kaggle.com/ultralytics/yolov5">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
    </a>
    <a href="https://hub.docker.com/r/ultralytics/yolov5">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
    </a>
    <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
    </a>
    <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
    </a>
    <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-small.png" width="15%"/>
    </a>
</div>  

## <div align="center">Compete and Win</div>

We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!

<p align="center">
  <a href="https://github.com/ultralytics/yolov5/discussions/3213">
  <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
</p>

## <div align="center">Why YOLOv5</div>

<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
<details>
  <summary>YOLOv5-P5 640 Figure (click to expand)</summary>

<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
</details>
<details>
  <summary>Figure Notes (click to expand)</summary>

* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size
  32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by
  `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`

</details>

### Pretrained Checkpoints

[assets]: https://github.com/ultralytics/yolov5/releases

|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPs<br><sup>640 (B)
|---                    |---  |---      |---      |---      |---     |---|---   |---
|[YOLOv5s][assets]      |640  |36.7     |36.7     |55.4     |**2.0** |   |7.3   |17.0
|[YOLOv5m][assets]      |640  |44.5     |44.5     |63.1     |2.7     |   |21.4  |51.3
|[YOLOv5l][assets]      |640  |48.2     |48.2     |66.9     |3.8     |   |47.0  |115.4
|[YOLOv5x][assets]      |640  |**50.4** |**50.4** |**68.8** |6.1     |   |87.7  |218.8
|                       |     |         |         |         |        |   |      |
|[YOLOv5s6][assets]     |1280 |43.3     |43.3     |61.9     |**4.3** |   |12.7  |17.4
|[YOLOv5m6][assets]     |1280 |50.5     |50.5     |68.7     |8.4     |   |35.9  |52.4
|[YOLOv5l6][assets]     |1280 |53.4     |53.4     |71.1     |12.3    |   |77.2  |117.7
|[YOLOv5x6][assets]     |1280 |**54.4** |**54.4** |**72.0** |22.4    |   |141.8 |222.9
|                       |     |         |         |         |        |   |      |
|[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8    |   |-     |-

<details>
  <summary>Table Notes (click to expand)</summary>

* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results
  denote val2017 accuracy.
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP**
  by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a
  GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and
  includes FP16 inference, postprocessing and NMS. **Reproduce speed**
  by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half`
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale
  augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`

</details>

## <div align="center">Contribute</div>

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see
our [Contributing Guide](CONTRIBUTING.md) to get started.

## <div align="center">Contact</div>

For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).

<br>

<div align="center">
    <a href="https://github.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.linkedin.com/company/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://twitter.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://youtube.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.facebook.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.instagram.com/ultralytics/">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
    </a>
</div>