yolov5/classify/predict.py
Glenn Jocher 06831aa9e9
Improved Usage example docstrings (#9075)
* Updated Usage examples

* Update detect.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update predict.py

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-08-22 01:06:29 +02:00

124 lines
5.5 KiB
Python

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 classification inference on images, videos, directories, and globs.
Usage - sources:
$ python classify/predict.py --weights yolov5s.pt --source img.jpg # image
vid.mp4 # video
path/ # directory
'path/*.jpg' # glob
Usage - formats:
$ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
yolov5s-cls.torchscript # TorchScript
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s-cls.xml # OpenVINO
yolov5s-cls.engine # TensorRT
yolov5s-cls.mlmodel # CoreML (macOS-only)
yolov5s-cls_saved_model # TensorFlow SavedModel
yolov5s-cls.pb # TensorFlow GraphDef
yolov5s-cls.tflite # TensorFlow Lite
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
"""
import argparse
import os
import sys
from pathlib import Path
import torch.nn.functional as F
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.augmentations import classify_transforms
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages
from utils.general import LOGGER, Profile, check_file, check_requirements, colorstr, increment_path, print_args
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
source=ROOT / 'data/images', # file/dir/URL/glob
imgsz=224, # inference size
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
project=ROOT / 'runs/predict-cls', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
):
source = str(source)
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
if is_url and is_file:
source = check_file(source) # download
dt = Profile(), Profile(), Profile()
device = select_device(device)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
model.warmup(imgsz=(1, 3, imgsz, imgsz)) # warmup
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz))
for seen, (path, im, im0s, vid_cap, s) in enumerate(dataset):
# Image
with dt[0]:
im = im.unsqueeze(0).to(device)
im = im.half() if model.fp16 else im.float()
# Inference
with dt[1]:
results = model(im)
# Post-process
with dt[2]:
p = F.softmax(results, dim=1) # probabilities
i = p.argsort(1, descending=True)[:, :5].squeeze().tolist() # top 5 indices
# if save:
# imshow_cls(im, f=save_dir / Path(path).name, verbose=True)
LOGGER.info(
f"{s}{imgsz}x{imgsz} {', '.join(f'{model.names[j]} {p[0, j]:.2f}' for j in i)}, {dt[1].dt * 1E3:.1f}ms")
# Print results
t = tuple(x.t / (seen + 1) * 1E3 for x in dt) # speeds per image
shape = (1, 3, imgsz, imgsz)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
return p
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)