yolov5/utils/segment/general.py
Ultralytics Assistant 3ec95f9e3d
Update header line in Python files (#13072)
* Add license line to .github/ISSUE_TEMPLATE/bug-report.yml

* Add license line to .github/ISSUE_TEMPLATE/config.yml

* Add license line to .github/ISSUE_TEMPLATE/feature-request.yml

* Add license line to .github/ISSUE_TEMPLATE/question.yml

* Add license line to .github/dependabot.yml

* Add license line to .github/workflows/ci-testing.yml

* Add license line to .github/workflows/cla.yml

* Add license line to .github/workflows/codeql-analysis.yml

* Add license line to .github/workflows/docker.yml

* Add license line to .github/workflows/format.yml

* Add license line to .github/workflows/greetings.yml

* Add license line to .github/workflows/links.yml

* Add license line to .github/workflows/merge-main-into-prs.yml

* Add license line to .github/workflows/stale.yml

* Add license line to benchmarks.py

* Add license line to classify/predict.py

* Add license line to classify/train.py

* Add license line to classify/val.py

* Add license line to data/Argoverse.yaml

* Add license line to data/GlobalWheat2020.yaml

* Add license line to data/ImageNet.yaml

* Add license line to data/ImageNet10.yaml

* Add license line to data/ImageNet100.yaml

* Add license line to data/ImageNet1000.yaml

* Add license line to data/Objects365.yaml

* Add license line to data/SKU-110K.yaml

* Add license line to data/VOC.yaml

* Add license line to data/VisDrone.yaml

* Add license line to data/coco.yaml

* Add license line to data/coco128-seg.yaml

* Add license line to data/coco128.yaml

* Add license line to data/hyps/hyp.Objects365.yaml

* Add license line to data/hyps/hyp.VOC.yaml

* Add license line to data/hyps/hyp.no-augmentation.yaml

* Add license line to data/hyps/hyp.scratch-high.yaml

* Add license line to data/hyps/hyp.scratch-low.yaml

* Add license line to data/hyps/hyp.scratch-med.yaml

* Add license line to data/xView.yaml

* Add license line to detect.py

* Add license line to export.py

* Add license line to hubconf.py

* Add license line to models/common.py

* Add license line to models/experimental.py

* Add license line to models/hub/anchors.yaml

* Add license line to models/hub/yolov3-spp.yaml

* Add license line to models/hub/yolov3-tiny.yaml

* Add license line to models/hub/yolov3.yaml

* Add license line to models/hub/yolov5-bifpn.yaml

* Add license line to models/hub/yolov5-fpn.yaml

* Add license line to models/hub/yolov5-p2.yaml

* Add license line to models/hub/yolov5-p34.yaml

* Add license line to models/hub/yolov5-p6.yaml

* Add license line to models/hub/yolov5-p7.yaml

* Add license line to models/hub/yolov5-panet.yaml

* Add license line to models/hub/yolov5l6.yaml

* Add license line to models/hub/yolov5m6.yaml

* Add license line to models/hub/yolov5n6.yaml

* Add license line to models/hub/yolov5s-LeakyReLU.yaml

* Add license line to models/hub/yolov5s-ghost.yaml

* Add license line to models/hub/yolov5s-transformer.yaml

* Add license line to models/hub/yolov5s6.yaml

* Add license line to models/hub/yolov5x6.yaml

* Add license line to models/segment/yolov5l-seg.yaml

* Add license line to models/segment/yolov5m-seg.yaml

* Add license line to models/segment/yolov5n-seg.yaml

* Add license line to models/segment/yolov5s-seg.yaml

* Add license line to models/segment/yolov5x-seg.yaml

* Add license line to models/tf.py

* Add license line to models/yolo.py

* Add license line to models/yolov5l.yaml

* Add license line to models/yolov5m.yaml

* Add license line to models/yolov5n.yaml

* Add license line to models/yolov5s.yaml

* Add license line to models/yolov5x.yaml

* Add license line to pyproject.toml

* Add license line to segment/predict.py

* Add license line to segment/train.py

* Add license line to segment/val.py

* Add license line to train.py

* Add license line to utils/__init__.py

* Add license line to utils/activations.py

* Add license line to utils/augmentations.py

* Add license line to utils/autoanchor.py

* Add license line to utils/autobatch.py

* Add license line to utils/aws/resume.py

* Add license line to utils/callbacks.py

* Add license line to utils/dataloaders.py

* Add license line to utils/downloads.py

* Add license line to utils/flask_rest_api/example_request.py

* Add license line to utils/flask_rest_api/restapi.py

* Add license line to utils/general.py

* Add license line to utils/google_app_engine/app.yaml

* Add license line to utils/loggers/__init__.py

* Add license line to utils/loggers/clearml/clearml_utils.py

* Add license line to utils/loggers/clearml/hpo.py

* Add license line to utils/loggers/comet/__init__.py

* Add license line to utils/loggers/comet/comet_utils.py

* Add license line to utils/loggers/comet/hpo.py

* Add license line to utils/loggers/wandb/wandb_utils.py

* Add license line to utils/loss.py

* Add license line to utils/metrics.py

* Add license line to utils/plots.py

* Add license line to utils/segment/augmentations.py

* Add license line to utils/segment/dataloaders.py

* Add license line to utils/segment/general.py

* Add license line to utils/segment/loss.py

* Add license line to utils/segment/metrics.py

* Add license line to utils/segment/plots.py

* Add license line to utils/torch_utils.py

* Add license line to utils/triton.py

* Add license line to val.py

* Auto-format by https://ultralytics.com/actions

* Update ImageNet1000.yaml

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Auto-format by https://ultralytics.com/actions

---------

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2024-06-08 22:29:29 +02:00

164 lines
5.8 KiB
Python

# Ultralytics YOLOv5 🚀, AGPL-3.0 license
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def crop_mask(masks, boxes):
"""
"Crop" predicted masks by zeroing out everything not in the predicted bbox. Vectorized by Chong (thanks Chong).
Args:
- masks should be a size [n, h, w] tensor of masks
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
"""
n, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def process_mask_upsample(protos, masks_in, bboxes, shape):
"""
Crop after upsample.
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: input_image_size, (h, w)
return: h, w, n
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
"""
Crop before upsample.
proto_out: [mask_dim, mask_h, mask_w]
out_masks: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape:input_image_size, (h, w)
return: h, w, n
"""
c, mh, mw = protos.shape # CHW
ih, iw = shape
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
downsampled_bboxes = bboxes.clone()
downsampled_bboxes[:, 0] *= mw / iw
downsampled_bboxes[:, 2] *= mw / iw
downsampled_bboxes[:, 3] *= mh / ih
downsampled_bboxes[:, 1] *= mh / ih
masks = crop_mask(masks, downsampled_bboxes) # CHW
if upsample:
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
return masks.gt_(0.5)
def process_mask_native(protos, masks_in, bboxes, shape):
"""
Crop after upsample.
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: input_image_size, (h, w)
return: h, w, n
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(mh - pad[1]), int(mw - pad[0])
masks = masks[:, top:bottom, left:right]
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
"""
img1_shape: model input shape, [h, w]
img0_shape: origin pic shape, [h, w, 3]
masks: [h, w, num]
"""
# Rescale coordinates (xyxy) from im1_shape to im0_shape
if ratio_pad is None: # calculate from im0_shape
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
else:
pad = ratio_pad[1]
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
if len(masks.shape) < 2:
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
masks = masks[top:bottom, left:right]
# masks = masks.permute(2, 0, 1).contiguous()
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
# masks = masks.permute(1, 2, 0).contiguous()
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
if len(masks.shape) == 2:
masks = masks[:, :, None]
return masks
def mask_iou(mask1, mask2, eps=1e-7):
"""
mask1: [N, n] m1 means number of predicted objects
mask2: [M, n] m2 means number of gt objects
Note: n means image_w x image_h
return: masks iou, [N, M]
"""
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
return intersection / (union + eps)
def masks_iou(mask1, mask2, eps=1e-7):
"""
mask1: [N, n] m1 means number of predicted objects
mask2: [N, n] m2 means number of gt objects
Note: n means image_w x image_h
return: masks iou, (N, )
"""
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
return intersection / (union + eps)
def masks2segments(masks, strategy="largest"):
"""Converts binary (n,160,160) masks to polygon segments with options for concatenation or selecting the largest
segment.
"""
segments = []
for x in masks.int().cpu().numpy().astype("uint8"):
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
if c:
if strategy == "concat": # concatenate all segments
c = np.concatenate([x.reshape(-1, 2) for x in c])
elif strategy == "largest": # select largest segment
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
else:
c = np.zeros((0, 2)) # no segments found
segments.append(c.astype("float32"))
return segments