mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
* Update check_requirements() with auto-install This PR builds on an idea I had to automatically install missing dependencies rather than simply report an error message. YOLOv5 should now 1) display all dependency issues and not simply display the first missing dependency, and 2) attempt to install/update each missing/VersionConflict package. * cleanup * cleanup 2 * Check requirements.txt file exists * cleanup 3
587 lines
24 KiB
Python
Executable File
587 lines
24 KiB
Python
Executable File
# YOLOv5 general utils
|
|
|
|
import glob
|
|
import logging
|
|
import math
|
|
import os
|
|
import platform
|
|
import random
|
|
import re
|
|
import subprocess
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import torchvision
|
|
import yaml
|
|
|
|
from utils.google_utils import gsutil_getsize
|
|
from utils.metrics import fitness
|
|
from utils.torch_utils import init_torch_seeds
|
|
|
|
# Settings
|
|
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
|
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
|
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
|
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
|
|
|
|
|
|
def set_logging(rank=-1):
|
|
logging.basicConfig(
|
|
format="%(message)s",
|
|
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
|
|
|
|
|
def init_seeds(seed=0):
|
|
# Initialize random number generator (RNG) seeds
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
init_torch_seeds(seed)
|
|
|
|
|
|
def get_latest_run(search_dir='.'):
|
|
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
|
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
|
return max(last_list, key=os.path.getctime) if last_list else ''
|
|
|
|
|
|
def isdocker():
|
|
# Is environment a Docker container
|
|
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
|
|
|
|
|
|
def check_online():
|
|
# Check internet connectivity
|
|
import socket
|
|
try:
|
|
socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
|
|
return True
|
|
except OSError:
|
|
return False
|
|
|
|
|
|
def check_git_status():
|
|
# Recommend 'git pull' if code is out of date
|
|
print(colorstr('github: '), end='')
|
|
try:
|
|
assert Path('.git').exists(), 'skipping check (not a git repository)'
|
|
assert not isdocker(), 'skipping check (Docker image)'
|
|
assert check_online(), 'skipping check (offline)'
|
|
|
|
cmd = 'git fetch && git config --get remote.origin.url'
|
|
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
|
|
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
|
|
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
|
|
if n > 0:
|
|
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
|
|
f"Use 'git pull' to update or 'git clone {url}' to download latest."
|
|
else:
|
|
s = f'up to date with {url} ✅'
|
|
print(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
def check_requirements(file='requirements.txt', exclude=()):
|
|
# Check installed dependencies meet requirements
|
|
import pkg_resources as pkg
|
|
prefix = colorstr('red', 'bold', 'requirements:')
|
|
file = Path(file)
|
|
if not file.exists():
|
|
print(f"{prefix} {file.resolve()} not found, check failed.")
|
|
return
|
|
|
|
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
|
|
for r in requirements:
|
|
try:
|
|
pkg.require(r)
|
|
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
|
|
print(f"{prefix} {e.req} not found and is required by YOLOv5, attempting auto-install...")
|
|
print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
|
|
|
|
|
|
def check_img_size(img_size, s=32):
|
|
# Verify img_size is a multiple of stride s
|
|
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
|
|
if new_size != img_size:
|
|
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
|
|
return new_size
|
|
|
|
|
|
def check_imshow():
|
|
# Check if environment supports image displays
|
|
try:
|
|
assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
|
|
cv2.imshow('test', np.zeros((1, 1, 3)))
|
|
cv2.waitKey(1)
|
|
cv2.destroyAllWindows()
|
|
cv2.waitKey(1)
|
|
return True
|
|
except Exception as e:
|
|
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
|
|
return False
|
|
|
|
|
|
def check_file(file):
|
|
# Search for file if not found
|
|
if os.path.isfile(file) or file == '':
|
|
return file
|
|
else:
|
|
files = glob.glob('./**/' + file, recursive=True) # find file
|
|
assert len(files), 'File Not Found: %s' % file # assert file was found
|
|
assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique
|
|
return files[0] # return file
|
|
|
|
|
|
def check_dataset(dict):
|
|
# Download dataset if not found locally
|
|
val, s = dict.get('val'), dict.get('download')
|
|
if val and len(val):
|
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
|
if not all(x.exists() for x in val):
|
|
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
|
|
if s and len(s): # download script
|
|
print('Downloading %s ...' % s)
|
|
if s.startswith('http') and s.endswith('.zip'): # URL
|
|
f = Path(s).name # filename
|
|
torch.hub.download_url_to_file(s, f)
|
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
|
|
else: # bash script
|
|
r = os.system(s)
|
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
|
else:
|
|
raise Exception('Dataset not found.')
|
|
|
|
|
|
def make_divisible(x, divisor):
|
|
# Returns x evenly divisible by divisor
|
|
return math.ceil(x / divisor) * divisor
|
|
|
|
|
|
def clean_str(s):
|
|
# Cleans a string by replacing special characters with underscore _
|
|
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
|
|
|
|
|
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
|
# lambda function for sinusoidal ramp from y1 to y2
|
|
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
|
|
|
|
|
def colorstr(*input):
|
|
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
|
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
|
colors = {'black': '\033[30m', # basic colors
|
|
'red': '\033[31m',
|
|
'green': '\033[32m',
|
|
'yellow': '\033[33m',
|
|
'blue': '\033[34m',
|
|
'magenta': '\033[35m',
|
|
'cyan': '\033[36m',
|
|
'white': '\033[37m',
|
|
'bright_black': '\033[90m', # bright colors
|
|
'bright_red': '\033[91m',
|
|
'bright_green': '\033[92m',
|
|
'bright_yellow': '\033[93m',
|
|
'bright_blue': '\033[94m',
|
|
'bright_magenta': '\033[95m',
|
|
'bright_cyan': '\033[96m',
|
|
'bright_white': '\033[97m',
|
|
'end': '\033[0m', # misc
|
|
'bold': '\033[1m',
|
|
'underline': '\033[4m'}
|
|
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
|
|
|
|
|
def labels_to_class_weights(labels, nc=80):
|
|
# Get class weights (inverse frequency) from training labels
|
|
if labels[0] is None: # no labels loaded
|
|
return torch.Tensor()
|
|
|
|
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
|
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
|
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
|
|
|
# Prepend gridpoint count (for uCE training)
|
|
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
|
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
|
|
|
weights[weights == 0] = 1 # replace empty bins with 1
|
|
weights = 1 / weights # number of targets per class
|
|
weights /= weights.sum() # normalize
|
|
return torch.from_numpy(weights)
|
|
|
|
|
|
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
|
# Produces image weights based on class_weights and image contents
|
|
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
|
|
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
|
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
|
return image_weights
|
|
|
|
|
|
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
|
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
|
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
|
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
|
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
|
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
|
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
|
return x
|
|
|
|
|
|
def xyxy2xywh(x):
|
|
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
|
y[:, 2] = x[:, 2] - x[:, 0] # width
|
|
y[:, 3] = x[:, 3] - x[:, 1] # height
|
|
return y
|
|
|
|
|
|
def xywh2xyxy(x):
|
|
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
|
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
|
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
|
return y
|
|
|
|
|
|
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
|
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
|
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
|
|
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
|
|
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
|
|
return y
|
|
|
|
|
|
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
|
# Convert normalized segments into pixel segments, shape (n,2)
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = w * x[:, 0] + padw # top left x
|
|
y[:, 1] = h * x[:, 1] + padh # top left y
|
|
return y
|
|
|
|
|
|
def segment2box(segment, width=640, height=640):
|
|
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
|
x, y = segment.T # segment xy
|
|
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
|
x, y, = x[inside], y[inside]
|
|
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # cls, xyxy
|
|
|
|
|
|
def segments2boxes(segments):
|
|
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
|
boxes = []
|
|
for s in segments:
|
|
x, y = s.T # segment xy
|
|
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
|
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
|
|
|
|
|
def resample_segments(segments, n=1000):
|
|
# Up-sample an (n,2) segment
|
|
for i, s in enumerate(segments):
|
|
x = np.linspace(0, len(s) - 1, n)
|
|
xp = np.arange(len(s))
|
|
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
|
return segments
|
|
|
|
|
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
|
if ratio_pad is None: # calculate from img0_shape
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
|
else:
|
|
gain = ratio_pad[0][0]
|
|
pad = ratio_pad[1]
|
|
|
|
coords[:, [0, 2]] -= pad[0] # x padding
|
|
coords[:, [1, 3]] -= pad[1] # y padding
|
|
coords[:, :4] /= gain
|
|
clip_coords(coords, img0_shape)
|
|
return coords
|
|
|
|
|
|
def clip_coords(boxes, img_shape):
|
|
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
|
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
|
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
|
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
|
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
|
|
|
|
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
|
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
|
box2 = box2.T
|
|
|
|
# Get the coordinates of bounding boxes
|
|
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
|
else: # transform from xywh to xyxy
|
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
|
|
|
# Intersection area
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
|
|
|
# Union Area
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
|
union = w1 * h1 + w2 * h2 - inter + eps
|
|
|
|
iou = inter / union
|
|
if GIoU or DIoU or CIoU:
|
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
|
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
|
|
if DIoU:
|
|
return iou - rho2 / c2 # DIoU
|
|
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
|
with torch.no_grad():
|
|
alpha = v / (v - iou + (1 + eps))
|
|
return iou - (rho2 / c2 + v * alpha) # CIoU
|
|
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
|
c_area = cw * ch + eps # convex area
|
|
return iou - (c_area - union) / c_area # GIoU
|
|
else:
|
|
return iou # IoU
|
|
|
|
|
|
def box_iou(box1, box2):
|
|
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
Arguments:
|
|
box1 (Tensor[N, 4])
|
|
box2 (Tensor[M, 4])
|
|
Returns:
|
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
|
IoU values for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
def box_area(box):
|
|
# box = 4xn
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
area1 = box_area(box1.T)
|
|
area2 = box_area(box2.T)
|
|
|
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
|
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
|
|
|
|
|
def wh_iou(wh1, wh2):
|
|
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
|
wh1 = wh1[:, None] # [N,1,2]
|
|
wh2 = wh2[None] # [1,M,2]
|
|
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
|
|
|
|
|
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
|
labels=()):
|
|
"""Runs Non-Maximum Suppression (NMS) on inference results
|
|
|
|
Returns:
|
|
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
|
"""
|
|
|
|
nc = prediction.shape[2] - 5 # number of classes
|
|
xc = prediction[..., 4] > conf_thres # candidates
|
|
|
|
# Settings
|
|
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
|
max_det = 300 # maximum number of detections per image
|
|
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
|
time_limit = 10.0 # seconds to quit after
|
|
redundant = True # require redundant detections
|
|
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
|
merge = False # use merge-NMS
|
|
|
|
t = time.time()
|
|
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
|
for xi, x in enumerate(prediction): # image index, image inference
|
|
# Apply constraints
|
|
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
|
x = x[xc[xi]] # confidence
|
|
|
|
# Cat apriori labels if autolabelling
|
|
if labels and len(labels[xi]):
|
|
l = labels[xi]
|
|
v = torch.zeros((len(l), nc + 5), device=x.device)
|
|
v[:, :4] = l[:, 1:5] # box
|
|
v[:, 4] = 1.0 # conf
|
|
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
|
x = torch.cat((x, v), 0)
|
|
|
|
# If none remain process next image
|
|
if not x.shape[0]:
|
|
continue
|
|
|
|
# Compute conf
|
|
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
|
|
|
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
|
box = xywh2xyxy(x[:, :4])
|
|
|
|
# Detections matrix nx6 (xyxy, conf, cls)
|
|
if multi_label:
|
|
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
|
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
|
else: # best class only
|
|
conf, j = x[:, 5:].max(1, keepdim=True)
|
|
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
|
|
|
# Filter by class
|
|
if classes is not None:
|
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
|
|
|
# Apply finite constraint
|
|
# if not torch.isfinite(x).all():
|
|
# x = x[torch.isfinite(x).all(1)]
|
|
|
|
# Check shape
|
|
n = x.shape[0] # number of boxes
|
|
if not n: # no boxes
|
|
continue
|
|
elif n > max_nms: # excess boxes
|
|
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
|
|
|
# Batched NMS
|
|
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
|
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
|
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
|
if i.shape[0] > max_det: # limit detections
|
|
i = i[:max_det]
|
|
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
|
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
|
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
|
weights = iou * scores[None] # box weights
|
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
|
if redundant:
|
|
i = i[iou.sum(1) > 1] # require redundancy
|
|
|
|
output[xi] = x[i]
|
|
if (time.time() - t) > time_limit:
|
|
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
|
break # time limit exceeded
|
|
|
|
return output
|
|
|
|
|
|
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
|
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
|
x = torch.load(f, map_location=torch.device('cpu'))
|
|
if x.get('ema'):
|
|
x['model'] = x['ema'] # replace model with ema
|
|
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
|
|
x[k] = None
|
|
x['epoch'] = -1
|
|
x['model'].half() # to FP16
|
|
for p in x['model'].parameters():
|
|
p.requires_grad = False
|
|
torch.save(x, s or f)
|
|
mb = os.path.getsize(s or f) / 1E6 # filesize
|
|
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
|
|
|
|
|
|
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
|
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
|
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
|
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
|
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
|
|
|
if bucket:
|
|
url = 'gs://%s/evolve.txt' % bucket
|
|
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
|
|
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
|
|
|
|
with open('evolve.txt', 'a') as f: # append result
|
|
f.write(c + b + '\n')
|
|
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
|
x = x[np.argsort(-fitness(x))] # sort
|
|
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
|
|
|
|
# Save yaml
|
|
for i, k in enumerate(hyp.keys()):
|
|
hyp[k] = float(x[0, i + 7])
|
|
with open(yaml_file, 'w') as f:
|
|
results = tuple(x[0, :7])
|
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
|
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
|
yaml.dump(hyp, f, sort_keys=False)
|
|
|
|
if bucket:
|
|
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
|
|
|
|
|
|
def apply_classifier(x, model, img, im0):
|
|
# applies a second stage classifier to yolo outputs
|
|
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
|
for i, d in enumerate(x): # per image
|
|
if d is not None and len(d):
|
|
d = d.clone()
|
|
|
|
# Reshape and pad cutouts
|
|
b = xyxy2xywh(d[:, :4]) # boxes
|
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
|
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
|
d[:, :4] = xywh2xyxy(b).long()
|
|
|
|
# Rescale boxes from img_size to im0 size
|
|
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
|
|
|
# Classes
|
|
pred_cls1 = d[:, 5].long()
|
|
ims = []
|
|
for j, a in enumerate(d): # per item
|
|
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
|
im = cv2.resize(cutout, (224, 224)) # BGR
|
|
# cv2.imwrite('test%i.jpg' % j, cutout)
|
|
|
|
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
|
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
|
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
|
ims.append(im)
|
|
|
|
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
|
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
|
|
|
return x
|
|
|
|
|
|
def increment_path(path, exist_ok=True, sep=''):
|
|
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
|
path = Path(path) # os-agnostic
|
|
if (path.exists() and exist_ok) or (not path.exists()):
|
|
return str(path)
|
|
else:
|
|
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
|
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
|
i = [int(m.groups()[0]) for m in matches if m] # indices
|
|
n = max(i) + 1 if i else 2 # increment number
|
|
return f"{path}{sep}{n}" # update path
|