YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
 
 
 
Go to file
Jackson Argo 2e10909905
Fix missing attr model.model when loading custom yolov model (#8830)
* Update hubconf.py

Loading a custom yolov model causes this line to fail. Adding a test to check if the model actually has a model.model field. With this check, I'm able to load the model no prob.

Loading model via

```py
    model = torch.hub.load(
        'ultralytics/yolov5', 'custom', 'models/frozen_backbone_coco_unlabeled_best.onnx',
        autoshape=True, force_reload=False
    )
```

Causes traceback:

```
Traceback (most recent call last):
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/flask/app.py", line 2077, in wsgi_app
    response = self.full_dispatch_request()
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/flask/app.py", line 1525, in full_dispatch_request
    rv = self.handle_user_exception(e)
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/flask/app.py", line 1523, in full_dispatch_request
    rv = self.dispatch_request()
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/flask/app.py", line 1509, in dispatch_request
    return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args)
  File "/Users/jackson/Documents/GitHub/w210-capstone/api/endpoints/predictions.py", line 26, in post_predictions
    yolov_predictions = predict_bounding_boxes_for_collection(collection_id)
  File "/Users/jackson/Documents/GitHub/w210-capstone/api/predictions/predict_bounding_boxes.py", line 43, in predict_bounding_boxes_for_collection
    model = torch.hub.load(
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/torch/hub.py", line 404, in load
    model = _load_local(repo_or_dir, model, *args, **kwargs)
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/torch/hub.py", line 433, in _load_local
    model = entry(*args, **kwargs)
  File "/Users/jackson/.cache/torch/hub/ultralytics_yolov5_master/hubconf.py", line 72, in custom
    return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
  File "/Users/jackson/.cache/torch/hub/ultralytics_yolov5_master/hubconf.py", line 67, in _create
    raise Exception(s) from e
Exception: 'DetectMultiBackend' object has no attribute 'model'. Cache may be out of date, try `force_reload=True` or see https://github.com/ultralytics/yolov5/issues/36 for help.
Exception on /api/v1/predictions [POST]
Traceback (most recent call last):
  File "/Users/jackson/.cache/torch/hub/ultralytics_yolov5_master/hubconf.py", line 58, in _create
    model.model.model[-1].inplace = False  # Detect.inplace=False for safe multithread inference
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1185, in __getattr__
    raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'DetectMultiBackend' object has no attribute 'model'
```

* Update hubconf.py

* Update common.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-08-02 01:46:08 +02:00
.github Update README.md with contributors.png (#8820) 2022-08-01 20:28:24 +02:00
data Dataset autodownload fstring updates 2022-05-31 12:36:20 +02:00
models Fix missing attr model.model when loading custom yolov model (#8830) 2022-08-02 01:46:08 +02:00
utils RUN git clone instead of COPY to `/usr/src/app` (#8827) 2022-08-01 21:45:31 +02:00
.dockerignore Add .git to .dockerignore (#8815) 2022-08-01 03:33:28 +02:00
.gitattributes git attrib 2020-07-16 16:46:57 +02:00
.gitignore Ignore `*_openvino_model/` dir (#6180) 2022-01-03 18:43:21 -08:00
.pre-commit-config.yaml [pre-commit.ci] pre-commit suggestions (#8828) 2022-08-01 21:48:59 +02:00
CONTRIBUTING.md Add mdformat to precommit checks and update other version (#7529) 2022-04-22 13:36:27 -07:00
LICENSE Add pre-commit CI actions (#4982) 2021-10-28 18:35:01 +02:00
README.md Update README.md with contributors.png (#8820) 2022-08-01 20:28:24 +02:00
detect.py Fix `detect.py --update` list bug (#8783) 2022-07-29 17:07:24 +02:00
export.py Dynamic batch size support for TensorRT (#8526) 2022-07-29 13:51:16 +02:00
hubconf.py Fix missing attr model.model when loading custom yolov model (#8830) 2022-08-02 01:46:08 +02:00
requirements.txt Update requirements.txt with tf-cpu and tf-aarch64 (#8807) 2022-07-31 14:54:55 +02:00
setup.cfg Update setup.cfg to `description_file` field (#7248) 2022-04-03 00:18:18 +02:00
train.py Remove hook `torch.nan_to_num(x)` (#8826) 2022-08-01 21:39:04 +02:00
tutorial.ipynb Created using Colaboratory 2022-07-31 20:34:03 +02:00
val.py Fix val.py 'no labels found bug' (#8806) 2022-07-31 14:17:23 +02:00

README.md

English | 简体中文

CI CPU testing YOLOv5 Citation Docker Pulls
Open In Colab Open In Kaggle Join Forum

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

Documentation

See the YOLOv5 Docs for full documentation on training, testing and deployment.

Quick Start Examples

Install

Clone repo and install requirements.txt in a Python>=3.7.0 environment, including PyTorch>=1.7.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install
Inference

YOLOv5 PyTorch Hub inference. Models download automatically from the latest YOLOv5 release.

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

python detect.py --source 0  # webcam
                          img.jpg  # image
                          vid.mp4  # video
                          path/  # directory
                          path/*.jpg  # glob
                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
Training

The commands below reproduce YOLOv5 COCO results. Models and datasets download automatically from the latest YOLOv5 release. Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU (Multi-GPU times faster). Use the largest --batch-size possible, or pass --batch-size -1 for YOLOv5 AutoBatch. Batch sizes shown for V100-16GB.

python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
                                       yolov5s                                64
                                       yolov5m                                40
                                       yolov5l                                24
                                       yolov5x                                16
Tutorials

Environments

Get started in seconds with our verified environments. Click each icon below for details.

Integrations

Weights and Biases Roboflow NEW
Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & Biases Label and export your custom datasets directly to YOLOv5 for training with Roboflow

Why YOLOv5

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand)
  • COCO AP val denotes mAP@0.5:0.95 metric measured on the 5000-image COCO val2017 dataset over various inference sizes from 256 to 1536.
  • GPU Speed measures average inference time per image on COCO val2017 dataset using a AWS p3.2xlarge V100 instance at batch-size 32.
  • EfficientDet data from google/automl at batch size 8.
  • Reproduce by python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt

Pretrained Checkpoints

Model size
(pixels)
mAPval
0.5:0.95
mAPval
0.5
Speed
CPU b1
(ms)
Speed
V100 b1
(ms)
Speed
V100 b32
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5
YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0
YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7
YOLOv5n6 1280 36.0 54.4 153 8.1 2.1 3.2 4.6
YOLOv5s6 1280 44.8 63.7 385 8.2 3.6 12.6 16.8
YOLOv5m6 1280 51.3 69.3 887 11.1 6.8 35.7 50.0
YOLOv5l6 1280 53.7 71.3 1784 15.8 10.5 76.8 111.4
YOLOv5x6
+ TTA
1280
1536
55.0
55.8
72.7
72.7
3136
-
26.2
-
19.4
-
140.7
-
209.8
-
Table Notes (click to expand)
  • All checkpoints are trained to 300 epochs with default settings. Nano and Small models use hyp.scratch-low.yaml hyps, all others use hyp.scratch-high.yaml.
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • Speed averaged over COCO val images using a AWS p3.2xlarge instance. NMS times (~1 ms/img) not included.
    Reproduce by python val.py --data coco.yaml --img 640 --task speed --batch 1
  • TTA Test Time Augmentation includes reflection and scale augmentations.
    Reproduce by python val.py --data coco.yaml --img 1536 --iou 0.7 --augment

Contribute

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!

Contact

For YOLOv5 bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please visit https://ultralytics.com/contact.