mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
* Update LICENSE to AGPL-3.0 This pull request updates the license of the YOLOv5 project from GNU General Public License v3.0 (GPL-3.0) to GNU Affero General Public License v3.0 (AGPL-3.0). We at Ultralytics have decided to make this change in order to better protect our intellectual property and ensure that any modifications made to the YOLOv5 source code will be shared back with the community when used over a network. AGPL-3.0 is very similar to GPL-3.0, but with an additional clause to address the use of software over a network. This change ensures that if someone modifies YOLOv5 and provides it as a service over a network (e.g., through a web application or API), they must also make the source code of their modified version available to users of the service. This update includes the following changes: - Replace the `LICENSE` file with the AGPL-3.0 license text - Update the license reference in the `README.md` file - Update the license headers in source code files We believe that this change will promote a more collaborative environment and help drive further innovation within the YOLOv5 community. Please review the changes and let us know if you have any questions or concerns. Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update headers to AGPL-3.0 --------- Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
410 lines
20 KiB
Python
410 lines
20 KiB
Python
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
|
"""
|
|
Validate a trained YOLOv5 detection model on a detection dataset
|
|
|
|
Usage:
|
|
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
|
|
|
|
Usage - formats:
|
|
$ python val.py --weights yolov5s.pt # PyTorch
|
|
yolov5s.torchscript # TorchScript
|
|
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
|
yolov5s_openvino_model # OpenVINO
|
|
yolov5s.engine # TensorRT
|
|
yolov5s.mlmodel # CoreML (macOS-only)
|
|
yolov5s_saved_model # TensorFlow SavedModel
|
|
yolov5s.pb # TensorFlow GraphDef
|
|
yolov5s.tflite # TensorFlow Lite
|
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
|
yolov5s_paddle_model # PaddlePaddle
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
FILE = Path(__file__).resolve()
|
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
|
if str(ROOT) not in sys.path:
|
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
|
|
|
from models.common import DetectMultiBackend
|
|
from utils.callbacks import Callbacks
|
|
from utils.dataloaders import create_dataloader
|
|
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
|
|
check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
|
|
print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
|
|
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
|
|
from utils.plots import output_to_target, plot_images, plot_val_study
|
|
from utils.torch_utils import select_device, smart_inference_mode
|
|
|
|
|
|
def save_one_txt(predn, save_conf, shape, file):
|
|
# Save one txt result
|
|
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
|
for *xyxy, conf, cls in predn.tolist():
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
|
with open(file, 'a') as f:
|
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
|
|
|
|
|
def save_one_json(predn, jdict, path, class_map):
|
|
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
|
box = xyxy2xywh(predn[:, :4]) # xywh
|
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
|
for p, b in zip(predn.tolist(), box.tolist()):
|
|
jdict.append({
|
|
'image_id': image_id,
|
|
'category_id': class_map[int(p[5])],
|
|
'bbox': [round(x, 3) for x in b],
|
|
'score': round(p[4], 5)})
|
|
|
|
|
|
def process_batch(detections, labels, iouv):
|
|
"""
|
|
Return correct prediction matrix
|
|
Arguments:
|
|
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
|
labels (array[M, 5]), class, x1, y1, x2, y2
|
|
Returns:
|
|
correct (array[N, 10]), for 10 IoU levels
|
|
"""
|
|
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
|
correct_class = labels[:, 0:1] == detections[:, 5]
|
|
for i in range(len(iouv)):
|
|
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
|
if x[0].shape[0]:
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
|
if x[0].shape[0] > 1:
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
# matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
correct[matches[:, 1].astype(int), i] = True
|
|
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
|
|
|
|
|
@smart_inference_mode()
|
|
def run(
|
|
data,
|
|
weights=None, # model.pt path(s)
|
|
batch_size=32, # batch size
|
|
imgsz=640, # inference size (pixels)
|
|
conf_thres=0.001, # confidence threshold
|
|
iou_thres=0.6, # NMS IoU threshold
|
|
max_det=300, # maximum detections per image
|
|
task='val', # train, val, test, speed or study
|
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
|
workers=8, # max dataloader workers (per RANK in DDP mode)
|
|
single_cls=False, # treat as single-class dataset
|
|
augment=False, # augmented inference
|
|
verbose=False, # verbose output
|
|
save_txt=False, # save results to *.txt
|
|
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
|
save_conf=False, # save confidences in --save-txt labels
|
|
save_json=False, # save a COCO-JSON results file
|
|
project=ROOT / 'runs/val', # save to project/name
|
|
name='exp', # save to project/name
|
|
exist_ok=False, # existing project/name ok, do not increment
|
|
half=True, # use FP16 half-precision inference
|
|
dnn=False, # use OpenCV DNN for ONNX inference
|
|
model=None,
|
|
dataloader=None,
|
|
save_dir=Path(''),
|
|
plots=True,
|
|
callbacks=Callbacks(),
|
|
compute_loss=None,
|
|
):
|
|
# Initialize/load model and set device
|
|
training = model is not None
|
|
if training: # called by train.py
|
|
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
|
half &= device.type != 'cpu' # half precision only supported on CUDA
|
|
model.half() if half else model.float()
|
|
else: # called directly
|
|
device = select_device(device, batch_size=batch_size)
|
|
|
|
# Directories
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
|
|
|
# Load model
|
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
|
half = model.fp16 # FP16 supported on limited backends with CUDA
|
|
if engine:
|
|
batch_size = model.batch_size
|
|
else:
|
|
device = model.device
|
|
if not (pt or jit):
|
|
batch_size = 1 # export.py models default to batch-size 1
|
|
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
|
|
|
# Data
|
|
data = check_dataset(data) # check
|
|
|
|
# Configure
|
|
model.eval()
|
|
cuda = device.type != 'cpu'
|
|
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
|
|
nc = 1 if single_cls else int(data['nc']) # number of classes
|
|
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
|
niou = iouv.numel()
|
|
|
|
# Dataloader
|
|
if not training:
|
|
if pt and not single_cls: # check --weights are trained on --data
|
|
ncm = model.model.nc
|
|
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
|
|
f'classes). Pass correct combination of --weights and --data that are trained together.'
|
|
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
|
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
|
|
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
|
dataloader = create_dataloader(data[task],
|
|
imgsz,
|
|
batch_size,
|
|
stride,
|
|
single_cls,
|
|
pad=pad,
|
|
rect=rect,
|
|
workers=workers,
|
|
prefix=colorstr(f'{task}: '))[0]
|
|
|
|
seen = 0
|
|
confusion_matrix = ConfusionMatrix(nc=nc)
|
|
names = model.names if hasattr(model, 'names') else model.module.names # get class names
|
|
if isinstance(names, (list, tuple)): # old format
|
|
names = dict(enumerate(names))
|
|
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
|
s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
|
|
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
|
dt = Profile(), Profile(), Profile() # profiling times
|
|
loss = torch.zeros(3, device=device)
|
|
jdict, stats, ap, ap_class = [], [], [], []
|
|
callbacks.run('on_val_start')
|
|
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
|
|
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
|
callbacks.run('on_val_batch_start')
|
|
with dt[0]:
|
|
if cuda:
|
|
im = im.to(device, non_blocking=True)
|
|
targets = targets.to(device)
|
|
im = im.half() if half else im.float() # uint8 to fp16/32
|
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
|
nb, _, height, width = im.shape # batch size, channels, height, width
|
|
|
|
# Inference
|
|
with dt[1]:
|
|
preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
|
|
|
|
# Loss
|
|
if compute_loss:
|
|
loss += compute_loss(train_out, targets)[1] # box, obj, cls
|
|
|
|
# NMS
|
|
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
|
with dt[2]:
|
|
preds = non_max_suppression(preds,
|
|
conf_thres,
|
|
iou_thres,
|
|
labels=lb,
|
|
multi_label=True,
|
|
agnostic=single_cls,
|
|
max_det=max_det)
|
|
|
|
# Metrics
|
|
for si, pred in enumerate(preds):
|
|
labels = targets[targets[:, 0] == si, 1:]
|
|
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
|
path, shape = Path(paths[si]), shapes[si][0]
|
|
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
|
seen += 1
|
|
|
|
if npr == 0:
|
|
if nl:
|
|
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
|
if plots:
|
|
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
|
continue
|
|
|
|
# Predictions
|
|
if single_cls:
|
|
pred[:, 5] = 0
|
|
predn = pred.clone()
|
|
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
|
|
|
# Evaluate
|
|
if nl:
|
|
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
|
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
|
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
|
correct = process_batch(predn, labelsn, iouv)
|
|
if plots:
|
|
confusion_matrix.process_batch(predn, labelsn)
|
|
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
|
|
|
|
# Save/log
|
|
if save_txt:
|
|
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
|
if save_json:
|
|
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
|
|
callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
|
|
|
# Plot images
|
|
if plots and batch_i < 3:
|
|
plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
|
|
plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
|
|
|
|
callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
|
|
|
|
# Compute metrics
|
|
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
|
if len(stats) and stats[0].any():
|
|
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
|
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
|
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
|
|
|
|
# Print results
|
|
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
|
|
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
|
if nt.sum() == 0:
|
|
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
|
|
|
|
# Print results per class
|
|
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
|
for i, c in enumerate(ap_class):
|
|
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
|
|
|
# Print speeds
|
|
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
|
if not training:
|
|
shape = (batch_size, 3, imgsz, imgsz)
|
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
|
|
|
|
# Plots
|
|
if plots:
|
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
|
callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
|
|
|
# Save JSON
|
|
if save_json and len(jdict):
|
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
|
anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations
|
|
pred_json = str(save_dir / f'{w}_predictions.json') # predictions
|
|
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
|
|
with open(pred_json, 'w') as f:
|
|
json.dump(jdict, f)
|
|
|
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
|
check_requirements('pycocotools>=2.0.6')
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
anno = COCO(anno_json) # init annotations api
|
|
pred = anno.loadRes(pred_json) # init predictions api
|
|
eval = COCOeval(anno, pred, 'bbox')
|
|
if is_coco:
|
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
|
|
eval.evaluate()
|
|
eval.accumulate()
|
|
eval.summarize()
|
|
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
|
except Exception as e:
|
|
LOGGER.info(f'pycocotools unable to run: {e}')
|
|
|
|
# Return results
|
|
model.float() # for training
|
|
if not training:
|
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
|
maps = np.zeros(nc) + map
|
|
for i, c in enumerate(ap_class):
|
|
maps[c] = ap[i]
|
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
|
|
|
|
|
def parse_opt():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
|
|
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
|
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
|
|
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
|
|
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
|
|
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
|
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
|
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
|
|
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
|
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
|
opt = parser.parse_args()
|
|
opt.data = check_yaml(opt.data) # check YAML
|
|
opt.save_json |= opt.data.endswith('coco.yaml')
|
|
opt.save_txt |= opt.save_hybrid
|
|
print_args(vars(opt))
|
|
return opt
|
|
|
|
|
|
def main(opt):
|
|
check_requirements(exclude=('tensorboard', 'thop'))
|
|
|
|
if opt.task in ('train', 'val', 'test'): # run normally
|
|
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
|
LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
|
|
if opt.save_hybrid:
|
|
LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
|
|
run(**vars(opt))
|
|
|
|
else:
|
|
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
|
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
|
|
if opt.task == 'speed': # speed benchmarks
|
|
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
|
|
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
|
for opt.weights in weights:
|
|
run(**vars(opt), plots=False)
|
|
|
|
elif opt.task == 'study': # speed vs mAP benchmarks
|
|
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
|
|
for opt.weights in weights:
|
|
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
|
|
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
|
for opt.imgsz in x: # img-size
|
|
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
|
|
r, _, t = run(**vars(opt), plots=False)
|
|
y.append(r + t) # results and times
|
|
np.savetxt(f, y, fmt='%10.4g') # save
|
|
subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt'])
|
|
plot_val_study(x=x) # plot
|
|
else:
|
|
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
opt = parse_opt()
|
|
main(opt)
|