yolov5/classify/val.py
Glenn Jocher 34cf749958
Update LICENSE to AGPL-3.0 (#11359)
* Update LICENSE to AGPL-3.0

This pull request updates the license of the YOLOv5 project from GNU General Public License v3.0 (GPL-3.0) to GNU Affero General Public License v3.0 (AGPL-3.0).

We at Ultralytics have decided to make this change in order to better protect our intellectual property and ensure that any modifications made to the YOLOv5 source code will be shared back with the community when used over a network.

AGPL-3.0 is very similar to GPL-3.0, but with an additional clause to address the use of software over a network. This change ensures that if someone modifies YOLOv5 and provides it as a service over a network (e.g., through a web application or API), they must also make the source code of their modified version available to users of the service.

This update includes the following changes:
- Replace the `LICENSE` file with the AGPL-3.0 license text
- Update the license reference in the `README.md` file
- Update the license headers in source code files

We believe that this change will promote a more collaborative environment and help drive further innovation within the YOLOv5 community.

Please review the changes and let us know if you have any questions or concerns.


Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update headers to AGPL-3.0

---------

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2023-04-14 14:36:16 +02:00

171 lines
7.9 KiB
Python

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Validate a trained YOLOv5 classification model on a classification dataset
Usage:
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
Usage - formats:
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch
yolov5s-cls.torchscript # TorchScript
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s-cls_openvino_model # OpenVINO
yolov5s-cls.engine # TensorRT
yolov5s-cls.mlmodel # CoreML (macOS-only)
yolov5s-cls_saved_model # TensorFlow SavedModel
yolov5s-cls.pb # TensorFlow GraphDef
yolov5s-cls.tflite # TensorFlow Lite
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
yolov5s-cls_paddle_model # PaddlePaddle
"""
import argparse
import os
import sys
from pathlib import Path
import torch
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import create_classification_dataloader
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
increment_path, print_args)
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
data=ROOT / '../datasets/mnist', # dataset dir
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
batch_size=128, # batch size
imgsz=224, # inference size (pixels)
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
verbose=False, # verbose output
project=ROOT / 'runs/val-cls', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
criterion=None,
pbar=None,
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
half &= device.type != 'cpu' # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
half = model.fp16 # FP16 supported on limited backends with CUDA
if engine:
batch_size = model.batch_size
else:
device = model.device
if not (pt or jit):
batch_size = 1 # export.py models default to batch-size 1
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
# Dataloader
data = Path(data)
test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
dataloader = create_classification_dataloader(path=test_dir,
imgsz=imgsz,
batch_size=batch_size,
augment=False,
rank=-1,
workers=workers)
model.eval()
pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
n = len(dataloader) # number of batches
action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
desc = f'{pbar.desc[:-36]}{action:>36}' if pbar else f'{action}'
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
for images, labels in bar:
with dt[0]:
images, labels = images.to(device, non_blocking=True), labels.to(device)
with dt[1]:
y = model(images)
with dt[2]:
pred.append(y.argsort(1, descending=True)[:, :5])
targets.append(labels)
if criterion:
loss += criterion(y, labels)
loss /= n
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
top1, top5 = acc.mean(0).tolist()
if pbar:
pbar.desc = f'{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}'
if verbose: # all classes
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
for i, c in model.names.items():
acc_i = acc[targets == i]
top1i, top5i = acc_i.mean(0).tolist()
LOGGER.info(f'{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}')
# Print results
t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
shape = (1, 3, imgsz, imgsz)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
return top1, top5, loss
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
parser.add_argument('--batch-size', type=int, default=128, help='batch size')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == '__main__':
opt = parse_opt()
main(opt)