138 lines
5.8 KiB
Python
138 lines
5.8 KiB
Python
# YOLOv5 experiment logging utils
|
|
import torch
|
|
import warnings
|
|
from threading import Thread
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from utils.general import colorstr, emojis
|
|
from utils.loggers.wandb.wandb_utils import WandbLogger
|
|
from utils.plots import plot_images, plot_results
|
|
from utils.torch_utils import de_parallel
|
|
|
|
LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
|
|
|
|
try:
|
|
import wandb
|
|
|
|
assert hasattr(wandb, '__version__') # verify package import not local dir
|
|
except (ImportError, AssertionError):
|
|
wandb = None
|
|
|
|
|
|
class Loggers():
|
|
# YOLOv5 Loggers class
|
|
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
|
self.save_dir = save_dir
|
|
self.weights = weights
|
|
self.opt = opt
|
|
self.hyp = hyp
|
|
self.logger = logger # for printing results to console
|
|
self.include = include
|
|
for k in LOGGERS:
|
|
setattr(self, k, None) # init empty logger dictionary
|
|
|
|
def start(self):
|
|
self.csv = True # always log to csv
|
|
|
|
# Message
|
|
if not wandb:
|
|
prefix = colorstr('Weights & Biases: ')
|
|
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)"
|
|
print(emojis(s))
|
|
|
|
# TensorBoard
|
|
s = self.save_dir
|
|
if 'tb' in self.include and not self.opt.evolve:
|
|
prefix = colorstr('TensorBoard: ')
|
|
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
|
self.tb = SummaryWriter(str(s))
|
|
|
|
# W&B
|
|
if wandb and 'wandb' in self.include:
|
|
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
|
|
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
|
|
self.opt.hyp = self.hyp # add hyperparameters
|
|
self.wandb = WandbLogger(self.opt, run_id)
|
|
else:
|
|
self.wandb = None
|
|
|
|
return self
|
|
|
|
def on_train_batch_end(self, ni, model, imgs, targets, paths, plots):
|
|
# Callback runs on train batch end
|
|
if plots:
|
|
if ni == 0:
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter('ignore') # suppress jit trace warning
|
|
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
|
|
if ni < 3:
|
|
f = self.save_dir / f'train_batch{ni}.jpg' # filename
|
|
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
|
if self.wandb and ni == 10:
|
|
files = sorted(self.save_dir.glob('train*.jpg'))
|
|
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
|
|
|
def on_train_epoch_end(self, epoch):
|
|
# Callback runs on train epoch end
|
|
if self.wandb:
|
|
self.wandb.current_epoch = epoch + 1
|
|
|
|
def on_val_batch_end(self, pred, predn, path, names, im):
|
|
# Callback runs on train batch end
|
|
if self.wandb:
|
|
self.wandb.val_one_image(pred, predn, path, names, im)
|
|
|
|
def on_val_end(self):
|
|
# Callback runs on val end
|
|
if self.wandb:
|
|
files = sorted(self.save_dir.glob('val*.jpg'))
|
|
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
|
|
|
def on_train_val_end(self, mloss, results, lr, epoch, best_fitness, fi):
|
|
# Callback runs on val end during training
|
|
vals = list(mloss) + list(results) + lr
|
|
keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics
|
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
|
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
|
x = {k: v for k, v in zip(keys, vals)} # dict
|
|
|
|
if self.csv:
|
|
file = self.save_dir / 'results.csv'
|
|
n = len(x) + 1 # number of cols
|
|
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # add header
|
|
with open(file, 'a') as f:
|
|
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
|
|
|
if self.tb:
|
|
for k, v in x.items():
|
|
self.tb.add_scalar(k, v, epoch) # TensorBoard
|
|
|
|
if self.wandb:
|
|
self.wandb.log(x)
|
|
self.wandb.end_epoch(best_result=best_fitness == fi)
|
|
|
|
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
|
# Callback runs on model save event
|
|
if self.wandb:
|
|
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
|
|
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
|
|
|
def on_train_end(self, last, best, plots):
|
|
# Callback runs on training end
|
|
if plots:
|
|
plot_results(dir=self.save_dir) # save results.png
|
|
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
|
|
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
|
if self.wandb:
|
|
wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
|
wandb.log_artifact(str(best if best.exists() else last), type='model',
|
|
name='run_' + self.wandb.wandb_run.id + '_model',
|
|
aliases=['latest', 'best', 'stripped'])
|
|
self.wandb.finish_run()
|
|
|
|
def log_images(self, paths):
|
|
# Log images
|
|
if self.wandb:
|
|
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|