yolov5/hubconf.py
Jackson Argo 2e10909905
Fix missing attr model.model when loading custom yolov model (#8830)
* Update hubconf.py

Loading a custom yolov model causes this line to fail. Adding a test to check if the model actually has a model.model field. With this check, I'm able to load the model no prob.

Loading model via

```py
    model = torch.hub.load(
        'ultralytics/yolov5', 'custom', 'models/frozen_backbone_coco_unlabeled_best.onnx',
        autoshape=True, force_reload=False
    )
```

Causes traceback:

```
Traceback (most recent call last):
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/flask/app.py", line 2077, in wsgi_app
    response = self.full_dispatch_request()
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/flask/app.py", line 1525, in full_dispatch_request
    rv = self.handle_user_exception(e)
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/flask/app.py", line 1523, in full_dispatch_request
    rv = self.dispatch_request()
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/flask/app.py", line 1509, in dispatch_request
    return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args)
  File "/Users/jackson/Documents/GitHub/w210-capstone/api/endpoints/predictions.py", line 26, in post_predictions
    yolov_predictions = predict_bounding_boxes_for_collection(collection_id)
  File "/Users/jackson/Documents/GitHub/w210-capstone/api/predictions/predict_bounding_boxes.py", line 43, in predict_bounding_boxes_for_collection
    model = torch.hub.load(
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/torch/hub.py", line 404, in load
    model = _load_local(repo_or_dir, model, *args, **kwargs)
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/torch/hub.py", line 433, in _load_local
    model = entry(*args, **kwargs)
  File "/Users/jackson/.cache/torch/hub/ultralytics_yolov5_master/hubconf.py", line 72, in custom
    return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
  File "/Users/jackson/.cache/torch/hub/ultralytics_yolov5_master/hubconf.py", line 67, in _create
    raise Exception(s) from e
Exception: 'DetectMultiBackend' object has no attribute 'model'. Cache may be out of date, try `force_reload=True` or see https://github.com/ultralytics/yolov5/issues/36 for help.
Exception on /api/v1/predictions [POST]
Traceback (most recent call last):
  File "/Users/jackson/.cache/torch/hub/ultralytics_yolov5_master/hubconf.py", line 58, in _create
    model.model.model[-1].inplace = False  # Detect.inplace=False for safe multithread inference
  File "/Users/jackson/Documents/GitHub/w210-capstone/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1185, in __getattr__
    raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'DetectMultiBackend' object has no attribute 'model'
```

* Update hubconf.py

* Update common.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-08-02 01:46:08 +02:00

161 lines
6.7 KiB
Python

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
Usage:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch
"""
import torch
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
"""Creates or loads a YOLOv5 model
Arguments:
name (str): model name 'yolov5s' or path 'path/to/best.pt'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
verbose (bool): print all information to screen
device (str, torch.device, None): device to use for model parameters
Returns:
YOLOv5 model
"""
from pathlib import Path
from models.common import AutoShape, DetectMultiBackend
from models.experimental import attempt_load
from models.yolo import Model
from utils.downloads import attempt_download
from utils.general import LOGGER, check_requirements, intersect_dicts, logging
from utils.torch_utils import select_device
if not verbose:
LOGGER.setLevel(logging.WARNING)
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
name = Path(name)
path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
try:
device = select_device(device)
if pretrained and channels == 3 and classes == 80:
try:
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
if autoshape:
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
except Exception:
model = attempt_load(path, device=device, fuse=False) # arbitrary model
else:
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
model = Model(cfg, channels, classes) # create model
if pretrained:
ckpt = torch.load(attempt_download(path), map_location=device) # load
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
model.load_state_dict(csd, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
if not verbose:
LOGGER.setLevel(logging.INFO) # reset to default
return model.to(device)
except Exception as e:
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
raise Exception(s) from e
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
# YOLOv5 custom or local model
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-nano model https://github.com/ultralytics/yolov5
return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-small model https://github.com/ultralytics/yolov5
return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-medium model https://github.com/ultralytics/yolov5
return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-large model https://github.com/ultralytics/yolov5
return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
if __name__ == '__main__':
import argparse
from pathlib import Path
import numpy as np
from PIL import Image
from utils.general import cv2, print_args
# Argparser
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='yolov5s', help='model name')
opt = parser.parse_args()
print_args(vars(opt))
# Model
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
# model = custom(path='path/to/model.pt') # custom
# Images
imgs = [
'data/images/zidane.jpg', # filename
Path('data/images/zidane.jpg'), # Path
'https://ultralytics.com/images/zidane.jpg', # URI
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
Image.open('data/images/bus.jpg'), # PIL
np.zeros((320, 640, 3))] # numpy
# Inference
results = model(imgs, size=320) # batched inference
# Results
results.print()
results.save()