mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
* Improve mAP0.5-0.95 Two changes provided 1. Added limit on the maximum number of detections for each image likewise pycocotools 2. Rework process_batch function Changes #2 solved issue #4251 I also independently encountered the problem described in issue #4251 that the values for the same thresholds do not match when changing the limits in the torch.linspace function. These changes solve this problem. Currently during validation yolov5x.pt model the following results were obtained: from yolov5 validation Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 157/157 [01:07<00:00, 2.33it/s] all 5000 36335 0.743 0.626 0.682 0.506 from pycocotools Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.505 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.685 These results are very close, although not completely pass the competition issue #2258. I think it's problem with false positive bboxes matched ignored criteria, but this is not actual for custom datasets and does not require an additional solution. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove line to retain pycocotools results * Update val.py * Update val.py * Remove to device op * Higher precision int conversion * Update val.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
356 lines
14 KiB
Python
356 lines
14 KiB
Python
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
|
"""
|
|
Model validation metrics
|
|
"""
|
|
|
|
import math
|
|
import warnings
|
|
from pathlib import Path
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def fitness(x):
|
|
# Model fitness as a weighted combination of metrics
|
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
|
return (x[:, :4] * w).sum(1)
|
|
|
|
|
|
def smooth(y, f=0.05):
|
|
# Box filter of fraction f
|
|
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
|
p = np.ones(nf // 2) # ones padding
|
|
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
|
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
|
|
""" Compute the average precision, given the recall and precision curves.
|
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
|
# Arguments
|
|
tp: True positives (nparray, nx1 or nx10).
|
|
conf: Objectness value from 0-1 (nparray).
|
|
pred_cls: Predicted object classes (nparray).
|
|
target_cls: True object classes (nparray).
|
|
plot: Plot precision-recall curve at mAP@0.5
|
|
save_dir: Plot save directory
|
|
# Returns
|
|
The average precision as computed in py-faster-rcnn.
|
|
"""
|
|
|
|
# Sort by objectness
|
|
i = np.argsort(-conf)
|
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
|
|
|
# Find unique classes
|
|
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
|
nc = unique_classes.shape[0] # number of classes, number of detections
|
|
|
|
# Create Precision-Recall curve and compute AP for each class
|
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
|
for ci, c in enumerate(unique_classes):
|
|
i = pred_cls == c
|
|
n_l = nt[ci] # number of labels
|
|
n_p = i.sum() # number of predictions
|
|
if n_p == 0 or n_l == 0:
|
|
continue
|
|
|
|
# Accumulate FPs and TPs
|
|
fpc = (1 - tp[i]).cumsum(0)
|
|
tpc = tp[i].cumsum(0)
|
|
|
|
# Recall
|
|
recall = tpc / (n_l + eps) # recall curve
|
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
|
|
|
# Precision
|
|
precision = tpc / (tpc + fpc) # precision curve
|
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
|
|
|
# AP from recall-precision curve
|
|
for j in range(tp.shape[1]):
|
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
|
if plot and j == 0:
|
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
|
|
|
# Compute F1 (harmonic mean of precision and recall)
|
|
f1 = 2 * p * r / (p + r + eps)
|
|
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
|
names = dict(enumerate(names)) # to dict
|
|
if plot:
|
|
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
|
|
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
|
|
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
|
|
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
|
|
|
|
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
|
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
|
tp = (r * nt).round() # true positives
|
|
fp = (tp / (p + eps) - tp).round() # false positives
|
|
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
|
|
|
|
|
def compute_ap(recall, precision):
|
|
""" Compute the average precision, given the recall and precision curves
|
|
# Arguments
|
|
recall: The recall curve (list)
|
|
precision: The precision curve (list)
|
|
# Returns
|
|
Average precision, precision curve, recall curve
|
|
"""
|
|
|
|
# Append sentinel values to beginning and end
|
|
mrec = np.concatenate(([0.0], recall, [1.0]))
|
|
mpre = np.concatenate(([1.0], precision, [0.0]))
|
|
|
|
# Compute the precision envelope
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
|
|
|
# Integrate area under curve
|
|
method = 'interp' # methods: 'continuous', 'interp'
|
|
if method == 'interp':
|
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
|
else: # 'continuous'
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
|
|
|
return ap, mpre, mrec
|
|
|
|
|
|
class ConfusionMatrix:
|
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
|
self.matrix = np.zeros((nc + 1, nc + 1))
|
|
self.nc = nc # number of classes
|
|
self.conf = conf
|
|
self.iou_thres = iou_thres
|
|
|
|
def process_batch(self, detections, labels):
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
Arguments:
|
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
|
Returns:
|
|
None, updates confusion matrix accordingly
|
|
"""
|
|
detections = detections[detections[:, 4] > self.conf]
|
|
gt_classes = labels[:, 0].int()
|
|
detection_classes = detections[:, 5].int()
|
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
|
|
|
x = torch.where(iou > self.iou_thres)
|
|
if x[0].shape[0]:
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
|
if x[0].shape[0] > 1:
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
else:
|
|
matches = np.zeros((0, 3))
|
|
|
|
n = matches.shape[0] > 0
|
|
m0, m1, _ = matches.transpose().astype(int)
|
|
for i, gc in enumerate(gt_classes):
|
|
j = m0 == i
|
|
if n and sum(j) == 1:
|
|
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
|
else:
|
|
self.matrix[self.nc, gc] += 1 # background FP
|
|
|
|
if n:
|
|
for i, dc in enumerate(detection_classes):
|
|
if not any(m1 == i):
|
|
self.matrix[dc, self.nc] += 1 # background FN
|
|
|
|
def matrix(self):
|
|
return self.matrix
|
|
|
|
def tp_fp(self):
|
|
tp = self.matrix.diagonal() # true positives
|
|
fp = self.matrix.sum(1) - tp # false positives
|
|
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
|
return tp[:-1], fp[:-1] # remove background class
|
|
|
|
def plot(self, normalize=True, save_dir='', names=()):
|
|
try:
|
|
import seaborn as sn
|
|
|
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
|
|
|
fig = plt.figure(figsize=(12, 9), tight_layout=True)
|
|
nc, nn = self.nc, len(names) # number of classes, names
|
|
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
|
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
|
sn.heatmap(array,
|
|
annot=nc < 30,
|
|
annot_kws={
|
|
"size": 8},
|
|
cmap='Blues',
|
|
fmt='.2f',
|
|
square=True,
|
|
vmin=0.0,
|
|
xticklabels=names + ['background FP'] if labels else "auto",
|
|
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
|
|
fig.axes[0].set_xlabel('True')
|
|
fig.axes[0].set_ylabel('Predicted')
|
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
|
plt.close()
|
|
except Exception as e:
|
|
print(f'WARNING: ConfusionMatrix plot failure: {e}')
|
|
|
|
def print(self):
|
|
for i in range(self.nc + 1):
|
|
print(' '.join(map(str, self.matrix[i])))
|
|
|
|
|
|
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
|
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
|
|
|
# Get the coordinates of bounding boxes
|
|
if xywh: # transform from xywh to xyxy
|
|
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)
|
|
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
|
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
|
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
|
else: # x1, y1, x2, y2 = box1
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
|
|
|
# Intersection area
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
|
|
|
# Union Area
|
|
union = w1 * h1 + w2 * h2 - inter + eps
|
|
|
|
# IoU
|
|
iou = inter / union
|
|
if CIoU or DIoU or GIoU:
|
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
|
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
|
with torch.no_grad():
|
|
alpha = v / (v - iou + (1 + eps))
|
|
return iou - (rho2 / c2 + v * alpha) # CIoU
|
|
return iou - rho2 / c2 # DIoU
|
|
c_area = cw * ch + eps # convex area
|
|
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
|
return iou # IoU
|
|
|
|
|
|
def box_area(box):
|
|
# box = xyxy(4,n)
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
|
|
def box_iou(box1, box2):
|
|
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
Arguments:
|
|
box1 (Tensor[N, 4])
|
|
box2 (Tensor[M, 4])
|
|
Returns:
|
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
|
IoU values for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
|
(a1, a2), (b1, b2) = box1[:, None].chunk(2, 2), box2.chunk(2, 1)
|
|
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
|
|
|
# IoU = inter / (area1 + area2 - inter)
|
|
return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter)
|
|
|
|
|
|
def bbox_ioa(box1, box2, eps=1E-7):
|
|
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
|
box1: np.array of shape(4)
|
|
box2: np.array of shape(nx4)
|
|
returns: np.array of shape(n)
|
|
"""
|
|
|
|
# Get the coordinates of bounding boxes
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
|
|
|
# Intersection area
|
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
|
|
|
# box2 area
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
|
|
|
# Intersection over box2 area
|
|
return inter_area / box2_area
|
|
|
|
|
|
def wh_iou(wh1, wh2):
|
|
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
|
wh1 = wh1[:, None] # [N,1,2]
|
|
wh2 = wh2[None] # [1,M,2]
|
|
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
|
|
|
|
|
# Plots ----------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
|
# Precision-recall curve
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
py = np.stack(py, axis=1)
|
|
|
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
|
for i, y in enumerate(py.T):
|
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
|
else:
|
|
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
|
|
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
|
ax.set_xlabel('Recall')
|
|
ax.set_ylabel('Precision')
|
|
ax.set_xlim(0, 1)
|
|
ax.set_ylim(0, 1)
|
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
|
fig.savefig(save_dir, dpi=250)
|
|
plt.close()
|
|
|
|
|
|
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
|
# Metric-confidence curve
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
|
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
|
for i, y in enumerate(py):
|
|
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
|
else:
|
|
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
|
|
|
y = smooth(py.mean(0), 0.05)
|
|
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
|
ax.set_xlabel(xlabel)
|
|
ax.set_ylabel(ylabel)
|
|
ax.set_xlim(0, 1)
|
|
ax.set_ylim(0, 1)
|
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
|
fig.savefig(save_dir, dpi=250)
|
|
plt.close()
|