yolov5/export.py

466 lines
22 KiB
Python

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
PaddlePaddle | `paddle` | yolov5s_paddle_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
Usage:
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
Inference:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
$ npm start
"""
import argparse
import contextlib
import json
import os
import platform
import re
import subprocess
import sys
import time
import warnings
from pathlib import Path
# activate rknn hack
if '--rknpu' in sys.argv:
os.environ['RKNN_model_hack'] = "1"
rknpu = True
else:
rknpu = False
import pandas as pd
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != 'Windows':
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.experimental import attempt_load
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel, Segment
from utils.dataloaders import LoadImages
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
from utils.torch_utils import select_device, smart_inference_mode
MACOS = platform.system() == 'Darwin' # macOS environment
def export_formats():
# YOLOv5 export formats
x = [
['ONNX', 'onnx', '.onnx', True, True],
['OpenVINO', 'openvino', '_openvino_model', True, False],
['TensorRT', 'engine', '.engine', False, True],
['RKNN', 'rknn', '.rknn', True, False],
]
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
def try_export(inner_func):
# YOLOv5 export decorator, i..e @try_export
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
prefix = inner_args['prefix']
try:
with Profile() as dt:
f, model = inner_func(*args, **kwargs)
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
return f, model
except Exception as e:
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
return None, None
return outer_func
@try_export
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
# YOLOv5 ONNX export
check_requirements('onnx>=1.12.0')
import onnx
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
f = file.with_suffix('.onnx')
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
if dynamic:
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
if isinstance(model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(model, DetectionModel):
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
torch.onnx.export(
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
im.cpu() if dynamic else im,
f,
verbose=False,
opset_version=opset,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=['images'],
output_names=output_names,
dynamic_axes=dynamic or None)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Metadata
d = {'stride': int(max(model.stride)), 'names': model.names}
for k, v in d.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)
# Simplify
if simplify:
try:
cuda = torch.cuda.is_available()
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
import onnxsim
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
LOGGER.info(f'{prefix} simplifier failure: {e}')
return f, model_onnx
@try_export
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
# YOLOv5 OpenVINO export
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
args = [
'mo',
'--input_model',
str(file.with_suffix('.onnx')),
'--output_dir',
f,
'--data_type',
('FP16' if half else 'FP32'),]
subprocess.run(args, check=True, env=os.environ) # export
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
return f, None
@try_export
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
try:
import tensorrt as trt
except Exception:
if platform.system() == 'Linux':
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
import tensorrt as trt
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
grid = model.model[-1].anchor_grid
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
model.model[-1].anchor_grid = grid
else: # TensorRT >= 8
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
onnx = file.with_suffix('.onnx')
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
f = file.with_suffix('.engine') # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = workspace * 1 << 30
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(str(onnx)):
raise RuntimeError(f'failed to load ONNX file: {onnx}')
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
for inp in inputs:
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
if dynamic:
if im.shape[0] <= 1:
LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
profile = builder.create_optimization_profile()
for inp in inputs:
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
config.add_optimization_profile(profile)
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
if builder.platform_has_fast_fp16 and half:
config.set_flag(trt.BuilderFlag.FP16)
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
t.write(engine.serialize())
return f, None
@try_export
def export_rknn(model, batch_size, int8, data, prefix=colorstr('RKNN:')):
# YOLOv5 RKNN export
check_requirements('rknn-toolkit2')
from rknn.api import RKNN
# Create RKNN object
rknn = RKNN(verbose=False)
rknn.config(mean_values=[[0, 0, 0]], std_values=[
[255, 255, 255]], target_platform=os.getenv("RKNN_PLATFORM", "rk3588").lower())
rknn.load_onnx(model=str(model.with_suffix(".onnx")))
rknn.build(do_quantization=int8, dataset=data, rknn_batch_size=batch_size)
f = model.with_suffix('.rknn')
rknn.export_rknn(str(f))
rknn.release()
return f, None
@smart_inference_mode()
def run(
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
weights=ROOT / 'yolov5s.pt', # weights path
imgsz=(640, 640), # image (height, width)
batch_size=1, # batch size
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
include=('torchscript', 'onnx'), # include formats
half=False, # FP16 half-precision export
inplace=False, # set YOLOv5 Detect() inplace=True
optimize=False, # TorchScript: optimize for mobile
int8=False, # CoreML/TF INT8 quantization
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
simplify=False, # ONNX: simplify model
opset=12, # ONNX: opset version
verbose=False, # TensorRT: verbose log
workspace=4, # TensorRT: workspace size (GB)
):
t = time.time()
include = [x.lower() for x in include] # to lowercase
fmts = tuple(export_formats()['Argument']) # --include arguments
flags = [x in include for x in fmts]
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
onnx, xml, engine, _ = flags # export booleans
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
# Load PyTorch model
device = select_device(device)
if half:
assert device.type != 'cpu', '--half only compatible with GPU export, i.e. use --device 0'
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
# Checks
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
if optimize:
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
# Input
gs = int(max(model.stride)) # grid size (max stride)
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
if rknpu:
if batch_size != 1: LOGGER.info(f'Ignoring batch size in ONNX export for RKNN export')
im = torch.zeros(1, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
else:
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
# Update model
model.eval()
for k, m in model.named_modules():
if isinstance(m, Detect):
m.inplace = inplace
m.dynamic = dynamic
m.export = True
if rknpu:
from models.common import Focus
from models.common import Conv
from models.common_rk_plug_in import surrogate_focus
if isinstance(model.model[0], Focus):
# For yolo v5 version
surrogate_focous = surrogate_focus(int(model.model[0].conv.conv.weight.shape[1]/4),
model.model[0].conv.conv.weight.shape[0],
k=tuple(model.model[0].conv.conv.weight.shape[2:4]),
s=model.model[0].conv.conv.stride,
p=model.model[0].conv.conv.padding,
g=model.model[0].conv.conv.groups,
act=True)
surrogate_focous.conv.conv.weight = model.model[0].conv.conv.weight
surrogate_focous.conv.conv.bias = model.model[0].conv.conv.bias
surrogate_focous.conv.act = model.model[0].conv.act
temp_i = model.model[0].i
temp_f = model.model[0].f
model.model[0] = surrogate_focous
model.model[0].i = temp_i
model.model[0].f = temp_f
model.model[0].eval()
elif isinstance(model.model[0], Conv) and model.model[0].conv.kernel_size == (6, 6):
# For yolo v6 version
surrogate_focous = surrogate_focus(model.model[0].conv.weight.shape[1],
model.model[0].conv.weight.shape[0],
k=(3,3), # 6/2, 6/2
s=1,
p=(1,1), # 2/2, 2/2
g=model.model[0].conv.groups,
act=hasattr(model.model[0], 'act'))
surrogate_focous.conv.conv.weight[:,:3,:,:] = model.model[0].conv.weight[:,:,::2,::2]
surrogate_focous.conv.conv.weight[:,3:6,:,:] = model.model[0].conv.weight[:,:,1::2,::2]
surrogate_focous.conv.conv.weight[:,6:9,:,:] = model.model[0].conv.weight[:,:,::2,1::2]
surrogate_focous.conv.conv.weight[:,9:,:,:] = model.model[0].conv.weight[:,:,1::2,1::2]
surrogate_focous.conv.conv.bias = model.model[0].conv.bias
surrogate_focous.conv.act = model.model[0].act
temp_i = model.model[0].i
temp_f = model.model[0].f
model.model[0] = surrogate_focous
model.model[0].i = temp_i
model.model[0].f = temp_f
model.model[0].eval()
if rknpu:
if isinstance(model.model[-1], Detect):
# save anchors
print('---> save anchors for RKNN')
RK_anchors = model.model[-1].stride.reshape(3,1).repeat(1,3).reshape(-1,1)* model.model[-1].anchors.reshape(9,2)
with open('RK_anchors.txt', 'w') as anf:
# anf.write(str(model.model[-1].na)+'\n')
for _v in RK_anchors.numpy().flatten():
anf.write(str(_v)+'\n')
RK_anchors = RK_anchors.tolist()
print(RK_anchors)
if isinstance(model.model[-1], Segment):
print("export segment model for RKNPU")
model.model[-1]._register_seg_seperate(True)
else:
print("export detect model for RKNPU")
model.model[-1]._register_detect_seperate(True)
for _ in range(2):
y = model(im) # dry runs
if half:
im, model = im.half(), model.half() # to FP16
shape = tuple((y[0] if (isinstance(y, tuple) or (isinstance(y, list))) else y).shape) # model output shape
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
# Exports
f = [''] * len(fmts) # exported filenames
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
if engine: # TensorRT required before ONNX
f[0], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
if onnx or xml or rknpu: # OpenVINO and RKNN requires ONNX
f[1], _ = export_onnx(model, im, file, opset, dynamic, simplify)
if xml: # OpenVINO
f[2], _ = export_openvino(file, metadata, half)
if rknpu:
f[3], _ = export_rknn(file, batch_size, int8, data)
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
dir = Path('segment' if seg else 'classify' if cls else '')
h = '--half' if half else '' # --half FP16 inference arg
s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \
'# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else ''
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
f'\nVisualize: https://netron.app')
return f # return list of exported files/dirs
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
parser.add_argument('--include',
nargs='+',
default=['onnx'],
help='onnx, openvino, engine')
parser.add_argument('--rknpu', action='store_true', help='RKNN npu platform')
opt = parser.parse_known_args()[0] if known else parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
run(**vars(opt))
if __name__ == '__main__':
opt = parse_opt()
del opt.rknpu
main(opt)