yolov5/models/segment/yolov5n-seg.yaml
Ayush Chaurasia f9869f7ffd
YOLOv5 segmentation model support (#9052)
* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix duplicate plots.py

* Fix check_font()

* # torch.use_deterministic_algorithms(True)

* update doc detect->predict

* Resolve precommit for segment/train and segment/val

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Resolve precommit for utils/segment

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Resolve precommit min_wh

* Resolve precommit utils/segment/plots

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Resolve precommit utils/segment/general

* Align NMS-seg closer to NMS

* restore deterministic init_seeds code

* remove easydict dependency

* update

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* restore output_to_target mask

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update

* cleanup

* Remove unused ImageFont import

* Unified NMS

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* DetectMultiBackend compatibility

* segment/predict.py update

* update plot colors

* fix bbox shifted

* sort bbox by confidence

* enable overlap by default

* Merge detect/segment output_to_target() function

* Start segmentation CI

* fix plots

* Update ci-testing.yml

* fix training whitespace

* optimize process mask functions (can we merge both?)

* Update predict/detect

* Update plot_images

* Update plot_images_and_masks

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Add train to CI

* fix precommit

* fix precommit CI

* fix precommit pycocotools

* fix val float issues

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix masks float float issues

* suppress errors

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix no-predictions plotting bug

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add CSV Logger

* fix val len(plot_masks)

* speed up evaluation

* fix process_mask

* fix plots

* update segment/utils build_targets

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* optimize utils/segment/general crop()

* optimize utils/segment/general crop() 2

* minor updates

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* torch.where revert

* downsample only if different shape

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* loss cleanup

* loss cleanup 2

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* loss cleanup 3

* update project names

* Rename -seg yamls from _underscore to -dash

* prepare for yolov5n-seg.pt

* precommit space fix

* add coco128-seg.yaml

* update coco128-seg comments

* cleanup val.py

* Major val.py cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* precommit fix

* precommit fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* optional pycocotools

* remove CI pip install pycocotools (auto-installed now)

* seg yaml fix

* optimize mask_iou() and masks_iou()

* threaded fix

* Major train.py update

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Major segments/val/process_batch() update

* yolov5/val updates from segment

* process_batch numpy/tensor fix

* opt-in to pycocotools with --save-json

* threaded pycocotools ops for 2x speed increase

* Avoid permute contiguous if possible

* Add max_det=300 argument to both val.py and segment/val.py

* fix onnx_dynamic

* speed up pycocotools ops

* faster process_mask(upsample=True) for predict

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* eliminate permutations for process_mask(upsample=True)

* eliminate permute-contiguous in crop(), use native dimension order

* cleanup comment

* Add Proto() module

* fix class count

* fix anchor order

* broadcast mask_gti in loss for speed

* Cleanup seg loss

* faster indexing

* faster indexing fix

* faster indexing fix2

* revert faster indexing

* fix validation plotting

* Loss cleanup and mxyxy simplification

* Loss cleanup and mxyxy simplification 2

* revert validation plotting

* replace missing tanh

* Eliminate last permutation

* delete unneeded .float()

* Remove MaskIOULoss and crop(if HWC)

* Final v6.3 SegmentationModel architecture updates

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add support for TF export

* remove debugger trace

* add call

* update

* update

* Merge master

* Merge master

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update dataloaders.py

* Restore CI

* Update dataloaders.py

* Fix TF/TFLite export for segmentation model

* Merge master

* Cleanup predict.py mask plotting

* cleanup scale_masks()

* rename scale_masks to scale_image

* cleanup/optimize plot_masks

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add Annotator.masks()

* Annotator.masks() fix

* Update plots.py

* Annotator mask optimization

* Rename crop() to crop_mask()

* Do not crop in predict.py

* crop always

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Merge master

* Add vid-stride from master PR

* Update seg model outputs

* Update seg model outputs

* Add segmentation benchmarks

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add segmentation benchmarks

* Add segmentation benchmarks

* Add segmentation benchmarks

* Fix DetectMultiBackend for OpenVINO

* update Annotator.masks

* fix val plot

* revert val plot

* clean up

* revert pil

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix CI error

* fix predict log

* remove upsample

* update interpolate

* fix validation plot logging

* Annotator.masks() cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Remove segmentation_model definition

* Restore 0.99999 decimals

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 00:12:46 +02:00

49 lines
1.4 KiB
YAML

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]