yolov5/utils/flask_rest_api
Glenn Jocher 34cf749958
Update LICENSE to AGPL-3.0 (#11359)
* Update LICENSE to AGPL-3.0

This pull request updates the license of the YOLOv5 project from GNU General Public License v3.0 (GPL-3.0) to GNU Affero General Public License v3.0 (AGPL-3.0).

We at Ultralytics have decided to make this change in order to better protect our intellectual property and ensure that any modifications made to the YOLOv5 source code will be shared back with the community when used over a network.

AGPL-3.0 is very similar to GPL-3.0, but with an additional clause to address the use of software over a network. This change ensures that if someone modifies YOLOv5 and provides it as a service over a network (e.g., through a web application or API), they must also make the source code of their modified version available to users of the service.

This update includes the following changes:
- Replace the `LICENSE` file with the AGPL-3.0 license text
- Update the license reference in the `README.md` file
- Update the license headers in source code files

We believe that this change will promote a more collaborative environment and help drive further innovation within the YOLOv5 community.

Please review the changes and let us know if you have any questions or concerns.


Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update headers to AGPL-3.0

---------

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2023-04-14 14:36:16 +02:00
..
README.md Standardize headers and docstrings (#4417) 2021-08-14 21:17:51 +02:00
example_request.py Update LICENSE to AGPL-3.0 (#11359) 2023-04-14 14:36:16 +02:00
restapi.py Update LICENSE to AGPL-3.0 (#11359) 2023-04-14 14:36:16 +02:00

README.md

Flask REST API

REST APIs are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from PyTorch Hub.

Requirements

Flask is required. Install with:

$ pip install Flask

Run

After Flask installation run:

$ python3 restapi.py --port 5000

Then use curl to perform a request:

$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'

The model inference results are returned as a JSON response:

[
  {
    "class": 0,
    "confidence": 0.8900438547,
    "height": 0.9318675399,
    "name": "person",
    "width": 0.3264600933,
    "xcenter": 0.7438579798,
    "ycenter": 0.5207948685
  },
  {
    "class": 0,
    "confidence": 0.8440024257,
    "height": 0.7155083418,
    "name": "person",
    "width": 0.6546785235,
    "xcenter": 0.427829951,
    "ycenter": 0.6334488392
  },
  {
    "class": 27,
    "confidence": 0.3771208823,
    "height": 0.3902671337,
    "name": "tie",
    "width": 0.0696444362,
    "xcenter": 0.3675483763,
    "ycenter": 0.7991207838
  },
  {
    "class": 27,
    "confidence": 0.3527112305,
    "height": 0.1540903747,
    "name": "tie",
    "width": 0.0336618312,
    "xcenter": 0.7814827561,
    "ycenter": 0.5065554976
  }
]

An example python script to perform inference using requests is given in example_request.py