yolov5/utils/datasets.py
yzchen 4102fcc9a7
[WIP] Feature/ddp fixed (#401)
* Squashed commit of the following:

commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 14 17:33:38 2020 +0700

    Adding world_size

    Reduce calls to torch.distributed. For use in create_dataloader.

commit e742dd9619d29306c7541821238d3d7cddcdc508
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 14 15:38:48 2020 +0800

    Make SyncBN a choice

commit e90d4004387e6103fecad745f8cbc2edc918e906
Merge: 5bf8beb cd90360
Author: yzchen <Chenyzsjtu@gmail.com>
Date:   Tue Jul 14 15:32:10 2020 +0800

    Merge pull request #6 from NanoCode012/patch-5

    Update train.py

commit cd9036017e7f8bd519a8b62adab0f47ea67f4962
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 14 13:39:29 2020 +0700

    Update train.py

    Remove redundant `opt.` prefix.

commit 5bf8bebe8873afb18b762fe1f409aca116fac073
Merge: c9558a9 a1c8406
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 14 14:09:51 2020 +0800

    Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed

commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 14 13:51:34 2020 +0800

    Add device allocation for loss compute

commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 9 11:16:27 2020 +0800

    Revert drop_last

commit 1dabe33a5a223b758cc761fc8741c6224205a34b
Merge: a1ce9b1 4b8450b
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 9 11:15:49 2020 +0800

    Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed

commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 9 11:15:21 2020 +0800

    fix lr warning

commit 4b8450b46db76e5e58cd95df965d4736077cfb0e
Merge: b9a50ae 02c63ef
Author: yzchen <Chenyzsjtu@gmail.com>
Date:   Wed Jul 8 21:24:24 2020 +0800

    Merge pull request #4 from NanoCode012/patch-4

    Add drop_last for multi gpu

commit 02c63ef81cf98b28b10344fe2cce08a03b143941
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Wed Jul 8 10:08:30 2020 +0700

    Add drop_last for multi gpu

commit b9a50aed48ab1536f94d49269977e2accd67748f
Merge: ec2dc6c 121d90b
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 7 19:48:04 2020 +0800

    Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed

commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d
Merge: d0326e3 82a6182
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 7 19:34:31 2020 +0800

    Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed

commit d0326e398dfeeeac611ccc64198d4fe91b7aa969
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 7 19:31:24 2020 +0800

    Add SyncBN

commit 82a6182b3ad0689a4432b631b438004e5acb3b74
Merge: 96fa40a 050b2a5
Author: yzchen <Chenyzsjtu@gmail.com>
Date:   Tue Jul 7 19:21:01 2020 +0800

    Merge pull request #1 from NanoCode012/patch-2

    Convert BatchNorm to SyncBatchNorm

commit 050b2a5a79a89c9405854d439a1f70f892139b1c
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 7 12:38:14 2020 +0700

    Add cleanup for process_group

commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 7 12:07:40 2020 +0700

    Remove apex.parallel. Use torch.nn.parallel

    For future compatibility

commit 77c8e27e603bea9a69e7647587ca8d509dc1990d
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 7 01:54:39 2020 +0700

    Convert BatchNorm to SyncBatchNorm

commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Mon Jul 6 21:53:56 2020 +0800

    Fix the datset inconsistency problem

commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Mon Jul 6 11:34:03 2020 +0800

    Add loss multiplication to preserver the single-process performance

commit e83805563065ffd2e38f85abe008fc662cc17909
Merge: 625bb49 3bdea3f
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Fri Jul 3 20:56:30 2020 +0800

    Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed

commit 625bb49f4e52d781143fea0af36d14e5be8b040c
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 2 22:45:15 2020 +0800

    DDP established

* Squashed commit of the following:

commit 94147314e559a6bdd13cb9de62490d385c27596f
Merge: 65157e2 37acbdc
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 16 14:00:17 2020 +0800

    Merge branch 'master' of https://github.com/ultralytics/yolov4 into feature/DDP_fixed

commit 37acbdc0b6ef8c3343560834b914c83bbb0abbd1
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date:   Wed Jul 15 20:03:41 2020 -0700

    update test.py --save-txt

commit b8c2da4a0d6880afd7857207340706666071145b
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date:   Wed Jul 15 20:00:48 2020 -0700

    update test.py --save-txt

commit 65157e2fc97d371bc576e18b424e130eb3026917
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Wed Jul 15 16:44:13 2020 +0800

    Revert the README.md removal

commit 1c802bfa503623661d8617ca3f259835d27c5345
Merge: cd55b44 0f3b8bb
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Wed Jul 15 16:43:38 2020 +0800

    Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed

commit cd55b445c4dcd8003ff4b0b46b64adf7c16e5ce7
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Wed Jul 15 16:42:33 2020 +0800

    fix the DDP performance deterioration bug.

commit 0f3b8bb1fae5885474ba861bbbd1924fb622ee93
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date:   Wed Jul 15 00:28:53 2020 -0700

    Delete README.md

commit f5921ba1e35475f24b062456a890238cb7a3cf94
Merge: 85ab2f3 bd3fdbb
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Wed Jul 15 11:20:17 2020 +0800

    Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed

commit bd3fdbbf1b08ef87931eef49fa8340621caa7e87
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date:   Tue Jul 14 18:38:20 2020 -0700

    Update README.md

commit c1a97a7767ccb2aa9afc7a5e72fd159e7c62ec02
Merge: 2bf86b8 f796708
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date:   Tue Jul 14 18:36:53 2020 -0700

    Merge branch 'master' into feature/DDP_fixed

commit 2bf86b892fa2fd712f6530903a0d9b8533d7447a
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 14 22:18:15 2020 +0700

    Fixed world_size not found when called from test

commit 85ab2f38cdda28b61ad15a3a5a14c3aafb620dc8
Merge: 5a19011 c8357ad
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 14 22:19:58 2020 +0800

    Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed

commit 5a19011949398d06e744d8d5521ab4e6dfa06ab7
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 14 22:19:15 2020 +0800

    Add assertion for <=2 gpus DDP

commit c8357ad5b15a0e6aeef4d7fe67ca9637f7322a4d
Merge: e742dd9 787582f
Author: yzchen <Chenyzsjtu@gmail.com>
Date:   Tue Jul 14 22:10:02 2020 +0800

    Merge pull request #8 from MagicFrogSJTU/NanoCode012-patch-1

    Modify number of dataloaders' workers

commit 787582f97251834f955ef05a77072b8c673a8397
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 14 20:38:58 2020 +0700

    Fixed issue with single gpu not having world_size

commit 63648925288d63a21174a4dd28f92dbfebfeb75a
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 14 19:16:15 2020 +0700

    Add assert message for clarification

    Clarify why assertion was thrown to users

commit 69364d6050e048d0d8834e0f30ce84da3f6a13f3
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 14 17:36:48 2020 +0700

    Changed number of workers check

commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 14 17:33:38 2020 +0700

    Adding world_size

    Reduce calls to torch.distributed. For use in create_dataloader.

commit e742dd9619d29306c7541821238d3d7cddcdc508
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 14 15:38:48 2020 +0800

    Make SyncBN a choice

commit e90d4004387e6103fecad745f8cbc2edc918e906
Merge: 5bf8beb cd90360
Author: yzchen <Chenyzsjtu@gmail.com>
Date:   Tue Jul 14 15:32:10 2020 +0800

    Merge pull request #6 from NanoCode012/patch-5

    Update train.py

commit cd9036017e7f8bd519a8b62adab0f47ea67f4962
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 14 13:39:29 2020 +0700

    Update train.py

    Remove redundant `opt.` prefix.

commit 5bf8bebe8873afb18b762fe1f409aca116fac073
Merge: c9558a9 a1c8406
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 14 14:09:51 2020 +0800

    Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed

commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 14 13:51:34 2020 +0800

    Add device allocation for loss compute

commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 9 11:16:27 2020 +0800

    Revert drop_last

commit 1dabe33a5a223b758cc761fc8741c6224205a34b
Merge: a1ce9b1 4b8450b
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 9 11:15:49 2020 +0800

    Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed

commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 9 11:15:21 2020 +0800

    fix lr warning

commit 4b8450b46db76e5e58cd95df965d4736077cfb0e
Merge: b9a50ae 02c63ef
Author: yzchen <Chenyzsjtu@gmail.com>
Date:   Wed Jul 8 21:24:24 2020 +0800

    Merge pull request #4 from NanoCode012/patch-4

    Add drop_last for multi gpu

commit 02c63ef81cf98b28b10344fe2cce08a03b143941
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Wed Jul 8 10:08:30 2020 +0700

    Add drop_last for multi gpu

commit b9a50aed48ab1536f94d49269977e2accd67748f
Merge: ec2dc6c 121d90b
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 7 19:48:04 2020 +0800

    Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed

commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d
Merge: d0326e3 82a6182
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 7 19:34:31 2020 +0800

    Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed

commit d0326e398dfeeeac611ccc64198d4fe91b7aa969
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Tue Jul 7 19:31:24 2020 +0800

    Add SyncBN

commit 82a6182b3ad0689a4432b631b438004e5acb3b74
Merge: 96fa40a 050b2a5
Author: yzchen <Chenyzsjtu@gmail.com>
Date:   Tue Jul 7 19:21:01 2020 +0800

    Merge pull request #1 from NanoCode012/patch-2

    Convert BatchNorm to SyncBatchNorm

commit 050b2a5a79a89c9405854d439a1f70f892139b1c
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 7 12:38:14 2020 +0700

    Add cleanup for process_group

commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 7 12:07:40 2020 +0700

    Remove apex.parallel. Use torch.nn.parallel

    For future compatibility

commit 77c8e27e603bea9a69e7647587ca8d509dc1990d
Author: NanoCode012 <kevinvong@rocketmail.com>
Date:   Tue Jul 7 01:54:39 2020 +0700

    Convert BatchNorm to SyncBatchNorm

commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Mon Jul 6 21:53:56 2020 +0800

    Fix the datset inconsistency problem

commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Mon Jul 6 11:34:03 2020 +0800

    Add loss multiplication to preserver the single-process performance

commit e83805563065ffd2e38f85abe008fc662cc17909
Merge: 625bb49 3bdea3f
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Fri Jul 3 20:56:30 2020 +0800

    Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed

commit 625bb49f4e52d781143fea0af36d14e5be8b040c
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date:   Thu Jul 2 22:45:15 2020 +0800

    DDP established

* Fixed destroy_process_group in DP mode

* Update torch_utils.py

* Update utils.py

Revert build_targets() to current master.

* Update datasets.py

* Fixed world_size attribute not found

Co-authored-by: NanoCode012 <kevinvong@rocketmail.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2020-07-19 12:33:30 -07:00

909 lines
37 KiB
Python
Executable File

import glob
import math
import os
import random
import shutil
import time
from pathlib import Path
from threading import Thread
import cv2
import numpy as np
import torch
from PIL import Image, ExifTags
from torch.utils.data import Dataset
from tqdm import tqdm
from utils.utils import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv']
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
def get_hash(files):
# Returns a single hash value of a list of files
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
try:
rotation = dict(img._getexif().items())[orientation]
if rotation == 6: # rotation 270
s = (s[1], s[0])
elif rotation == 8: # rotation 90
s = (s[1], s[0])
except:
pass
return s
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, local_rank=-1, world_size=1):
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache.
with torch_distributed_zero_first(local_rank):
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
augment=augment, # augment images
hyp=hyp, # augmentation hyperparameters
rect=rect, # rectangular training
cache_images=cache,
single_cls=opt.single_cls,
stride=int(stride),
pad=pad)
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, 8]) # number of workers
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if local_rank != -1 else None
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=nw,
sampler=train_sampler,
pin_memory=True,
collate_fn=LoadImagesAndLabels.collate_fn)
return dataloader, dataset
class LoadImages: # for inference
def __init__(self, path, img_size=640):
p = str(Path(path)) # os-agnostic
p = os.path.abspath(p) # absolute path
if '*' in p:
files = sorted(glob.glob(p)) # glob
elif os.path.isdir(p):
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
elif os.path.isfile(p):
files = [p] # files
else:
raise Exception('ERROR: %s does not exist' % p)
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
ni, nv = len(images), len(videos)
self.img_size = img_size
self.files = images + videos
self.nf = ni + nv # number of files
self.video_flag = [False] * ni + [True] * nv
self.mode = 'images'
if any(videos):
self.new_video(videos[0]) # new video
else:
self.cap = None
assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
(p, img_formats, vid_formats)
def __iter__(self):
self.count = 0
return self
def __next__(self):
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = 'video'
ret_val, img0 = self.cap.read()
if not ret_val:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
raise StopIteration
else:
path = self.files[self.count]
self.new_video(path)
ret_val, img0 = self.cap.read()
self.frame += 1
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
else:
# Read image
self.count += 1
img0 = cv2.imread(path) # BGR
assert img0 is not None, 'Image Not Found ' + path
print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
# Padded resize
img = letterbox(img0, new_shape=self.img_size)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
return path, img, img0, self.cap
def new_video(self, path):
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
def __len__(self):
return self.nf # number of files
class LoadWebcam: # for inference
def __init__(self, pipe=0, img_size=640):
self.img_size = img_size
if pipe == '0':
pipe = 0 # local camera
# pipe = 'rtsp://192.168.1.64/1' # IP camera
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
# pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
# https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
# pipe = '"rtspsrc location="rtsp://username:password@192.168.1.64/1" latency=10 ! appsink' # GStreamer
# https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
# https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
# pipe = "rtspsrc location=rtsp://root:root@192.168.0.91:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer
self.pipe = pipe
self.cap = cv2.VideoCapture(pipe) # video capture object
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if cv2.waitKey(1) == ord('q'): # q to quit
self.cap.release()
cv2.destroyAllWindows()
raise StopIteration
# Read frame
if self.pipe == 0: # local camera
ret_val, img0 = self.cap.read()
img0 = cv2.flip(img0, 1) # flip left-right
else: # IP camera
n = 0
while True:
n += 1
self.cap.grab()
if n % 30 == 0: # skip frames
ret_val, img0 = self.cap.retrieve()
if ret_val:
break
# Print
assert ret_val, 'Camera Error %s' % self.pipe
img_path = 'webcam.jpg'
print('webcam %g: ' % self.count, end='')
# Padded resize
img = letterbox(img0, new_shape=self.img_size)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return img_path, img, img0, None
def __len__(self):
return 0
class LoadStreams: # multiple IP or RTSP cameras
def __init__(self, sources='streams.txt', img_size=640):
self.mode = 'images'
self.img_size = img_size
if os.path.isfile(sources):
with open(sources, 'r') as f:
sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
else:
sources = [sources]
n = len(sources)
self.imgs = [None] * n
self.sources = sources
for i, s in enumerate(sources):
# Start the thread to read frames from the video stream
print('%g/%g: %s... ' % (i + 1, n, s), end='')
cap = cv2.VideoCapture(0 if s == '0' else s)
assert cap.isOpened(), 'Failed to open %s' % s
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS) % 100
_, self.imgs[i] = cap.read() # guarantee first frame
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
thread.start()
print('') # newline
# check for common shapes
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
if not self.rect:
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
def update(self, index, cap):
# Read next stream frame in a daemon thread
n = 0
while cap.isOpened():
n += 1
# _, self.imgs[index] = cap.read()
cap.grab()
if n == 4: # read every 4th frame
_, self.imgs[index] = cap.retrieve()
n = 0
time.sleep(0.01) # wait time
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
img0 = self.imgs.copy()
if cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration
# Letterbox
img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
# Stack
img = np.stack(img, 0)
# Convert
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
img = np.ascontiguousarray(img)
return self.sources, img, img0, None
def __len__(self):
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False, stride=32, pad=0.0):
try:
f = [] # image files
for p in path if isinstance(path, list) else [path]:
p = str(Path(p)) # os-agnostic
parent = str(Path(p).parent) + os.sep
if os.path.isfile(p): # file
with open(p, 'r') as t:
t = t.read().splitlines()
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
elif os.path.isdir(p): # folder
f += glob.iglob(p + os.sep + '*.*')
else:
raise Exception('%s does not exist' % p)
self.img_files = sorted([x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats])
except Exception as e:
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
n = len(self.img_files)
assert n > 0, 'No images found in %s. See %s' % (path, help_url)
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches
self.n = n # number of images
self.batch = bi # batch index of image
self.img_size = img_size
self.augment = augment
self.hyp = hyp
self.image_weights = image_weights
self.rect = False if image_weights else rect
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
self.mosaic_border = [-img_size // 2, -img_size // 2]
self.stride = stride
# Define labels
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in
self.img_files]
# Check cache
cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
if os.path.isfile(cache_path):
cache = torch.load(cache_path) # load
if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
cache = self.cache_labels(cache_path) # re-cache
else:
cache = self.cache_labels(cache_path) # cache
# Get labels
labels, shapes = zip(*[cache[x] for x in self.img_files])
self.shapes = np.array(shapes, dtype=np.float64)
self.labels = list(labels)
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
if self.rect:
# Sort by aspect ratio
s = self.shapes # wh
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_files = [self.img_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
# Cache labels
create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
pbar = tqdm(self.label_files)
for i, file in enumerate(pbar):
l = self.labels[i] # label
if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
if single_cls:
l[:, 0] = 0 # force dataset into single-class mode
self.labels[i] = l
nf += 1 # file found
# Create subdataset (a smaller dataset)
if create_datasubset and ns < 1E4:
if ns == 0:
create_folder(path='./datasubset')
os.makedirs('./datasubset/images')
exclude_classes = 43
if exclude_classes not in l[:, 0]:
ns += 1
# shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
with open('./datasubset/images.txt', 'a') as f:
f.write(self.img_files[i] + '\n')
# Extract object detection boxes for a second stage classifier
if extract_bounding_boxes:
p = Path(self.img_files[i])
img = cv2.imread(str(p))
h, w = img.shape[:2]
for j, x in enumerate(l):
f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
if not os.path.exists(Path(f).parent):
os.makedirs(Path(f).parent) # make new output folder
b = x[1:] * [w, h, w, h] # box
b[2:] = b[2:].max() # rectangle to square
b[2:] = b[2:] * 1.3 + 30 # pad
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
else:
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
cache_path, nf, nm, ne, nd, n)
if nf == 0:
s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
print(s)
assert not augment, '%s. Can not train without labels.' % s
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
self.imgs = [None] * n
if cache_images:
gb = 0 # Gigabytes of cached images
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
self.img_hw0, self.img_hw = [None] * n, [None] * n
for i in pbar: # max 10k images
self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
gb += self.imgs[i].nbytes
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
def cache_labels(self, path='labels.cache'):
# Cache dataset labels, check images and read shapes
x = {} # dict
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
for (img, label) in pbar:
try:
l = []
image = Image.open(img)
image.verify() # PIL verify
# _ = io.imread(img) # skimage verify (from skimage import io)
shape = exif_size(image) # image size
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
if os.path.isfile(label):
with open(label, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
if len(l) == 0:
l = np.zeros((0, 5), dtype=np.float32)
x[img] = [l, shape]
except Exception as e:
x[img] = None
print('WARNING: %s: %s' % (img, e))
x['hash'] = get_hash(self.label_files + self.img_files)
torch.save(x, path) # save for next time
return x
def __len__(self):
return len(self.img_files)
# def __iter__(self):
# self.count = -1
# print('ran dataset iter')
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
# return self
def __getitem__(self, index):
if self.image_weights:
index = self.indices[index]
hyp = self.hyp
if self.mosaic:
# Load mosaic
img, labels = load_mosaic(self, index)
shapes = None
# MixUp https://arxiv.org/pdf/1710.09412.pdf
# if random.random() < 0.5:
# img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
# r = np.random.beta(0.3, 0.3) # mixup ratio, alpha=beta=0.3
# img = (img * r + img2 * (1 - r)).astype(np.uint8)
# labels = np.concatenate((labels, labels2), 0)
else:
# Load image
img, (h0, w0), (h, w) = load_image(self, index)
# Letterbox
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
# Load labels
labels = []
x = self.labels[index]
if x.size > 0:
# Normalized xywh to pixel xyxy format
labels = x.copy()
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
if self.augment:
# Augment imagespace
if not self.mosaic:
img, labels = random_affine(img, labels,
degrees=hyp['degrees'],
translate=hyp['translate'],
scale=hyp['scale'],
shear=hyp['shear'])
# Augment colorspace
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
# Apply cutouts
# if random.random() < 0.9:
# labels = cutout(img, labels)
nL = len(labels) # number of labels
if nL:
# convert xyxy to xywh
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
# Normalize coordinates 0 - 1
labels[:, [2, 4]] /= img.shape[0] # height
labels[:, [1, 3]] /= img.shape[1] # width
if self.augment:
# random left-right flip
lr_flip = True
if lr_flip and random.random() < 0.5:
img = np.fliplr(img)
if nL:
labels[:, 1] = 1 - labels[:, 1]
# random up-down flip
ud_flip = False
if ud_flip and random.random() < 0.5:
img = np.flipud(img)
if nL:
labels[:, 2] = 1 - labels[:, 2]
labels_out = torch.zeros((nL, 6))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
def load_image(self, index):
# loads 1 image from dataset, returns img, original hw, resized hw
img = self.imgs[index]
if img is None: # not cached
path = self.img_files[index]
img = cv2.imread(path) # BGR
assert img is not None, 'Image Not Found ' + path
h0, w0 = img.shape[:2] # orig hw
r = self.img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
else:
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
# Histogram equalization
# if random.random() < 0.2:
# for i in range(3):
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
def load_mosaic(self, index):
# loads images in a mosaic
labels4 = []
s = self.img_size
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = load_image(self, index)
# place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
# Labels
x = self.labels[index]
labels = x.copy()
if x.size > 0: # Normalized xywh to pixel xyxy format
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
labels4.append(labels)
# Concat/clip labels
if len(labels4):
labels4 = np.concatenate(labels4, 0)
# np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine
# Replicate
# img4, labels4 = replicate(img4, labels4)
# Augment
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
img4, labels4 = random_affine(img4, labels4,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
border=self.mosaic_border) # border to remove
return img4, labels4
def replicate(img, labels):
# Replicate labels
h, w = img.shape[:2]
boxes = labels[:, 1:].astype(int)
x1, y1, x2, y2 = boxes.T
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
x1b, y1b, x2b, y2b = boxes[i]
bh, bw = y2b - y1b, x2b - x1b
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
return img, labels
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, (dw, dh)
def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=(0, 0)):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
# targets = [cls, xyxy]
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
width = img.shape[1] + border[1] * 2
# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
# Translation
T = np.eye(3)
T[0, 2] = random.uniform(-translate, translate) * img.shape[1] + border[1] # x translation (pixels)
T[1, 2] = random.uniform(-translate, translate) * img.shape[0] + border[0] # y translation (pixels)
# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
# Combined rotation matrix
M = S @ T @ R # ORDER IS IMPORTANT HERE!!
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114))
# Transform label coordinates
n = len(targets)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = (xy @ M.T)[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# # apply angle-based reduction of bounding boxes
# radians = a * math.pi / 180
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
# x = (xy[:, 2] + xy[:, 0]) / 2
# y = (xy[:, 3] + xy[:, 1]) / 2
# w = (xy[:, 2] - xy[:, 0]) * reduction
# h = (xy[:, 3] - xy[:, 1]) * reduction
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
# reject warped points outside of image
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
w = xy[:, 2] - xy[:, 0]
h = xy[:, 3] - xy[:, 1]
area = w * h
area0 = (targets[:, 3] - targets[:, 1]) * (targets[:, 4] - targets[:, 2])
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) # aspect ratio
i = (w > 2) & (h > 2) & (area / (area0 * s + 1e-16) > 0.2) & (ar < 20)
targets = targets[i]
targets[:, 1:5] = xy[i]
return img, targets
def cutout(image, labels):
# https://arxiv.org/abs/1708.04552
# https://github.com/hysts/pytorch_cutout/blob/master/dataloader.py
# https://towardsdatascience.com/when-conventional-wisdom-fails-revisiting-data-augmentation-for-self-driving-cars-4831998c5509
h, w = image.shape[:2]
def bbox_ioa(box1, box2):
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
box2 = box2.transpose()
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
# Intersection area
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
# Intersection over box2 area
return inter_area / box2_area
# create random masks
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
for s in scales:
mask_h = random.randint(1, int(h * s))
mask_w = random.randint(1, int(w * s))
# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)
# apply random color mask
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
# return unobscured labels
if len(labels) and s > 0.03:
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
labels = labels[ioa < 0.60] # remove >60% obscured labels
return labels
def reduce_img_size(path='../data/sm4/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
# creates a new ./images_reduced folder with reduced size images of maximum size img_size
path_new = path + '_reduced' # reduced images path
create_folder(path_new)
for f in tqdm(glob.glob('%s/*.*' % path)):
try:
img = cv2.imread(f)
h, w = img.shape[:2]
r = img_size / max(h, w) # size ratio
if r < 1.0:
img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
cv2.imwrite(fnew, img)
except:
print('WARNING: image failure %s' % f)
def convert_images2bmp(): # from utils.datasets import *; convert_images2bmp()
# Save images
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
# for path in ['../coco/images/val2014', '../coco/images/train2014']:
for path in ['../data/sm4/images', '../data/sm4/background']:
create_folder(path + 'bmp')
for ext in formats: # ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
for f in tqdm(glob.glob('%s/*%s' % (path, ext)), desc='Converting %s' % ext):
cv2.imwrite(f.replace(ext.lower(), '.bmp').replace(path, path + 'bmp'), cv2.imread(f))
# Save labels
# for path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
for file in ['../data/sm4/out_train.txt', '../data/sm4/out_test.txt']:
with open(file, 'r') as f:
lines = f.read()
# lines = f.read().replace('2014/', '2014bmp/') # coco
lines = lines.replace('/images', '/imagesbmp')
lines = lines.replace('/background', '/backgroundbmp')
for ext in formats:
lines = lines.replace(ext, '.bmp')
with open(file.replace('.txt', 'bmp.txt'), 'w') as f:
f.write(lines)
def recursive_dataset2bmp(dataset='../data/sm4_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
# Converts dataset to bmp (for faster training)
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
for a, b, files in os.walk(dataset):
for file in tqdm(files, desc=a):
p = a + '/' + file
s = Path(file).suffix
if s == '.txt': # replace text
with open(p, 'r') as f:
lines = f.read()
for f in formats:
lines = lines.replace(f, '.bmp')
with open(p, 'w') as f:
f.write(lines)
elif s in formats: # replace image
cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
if s != '.bmp':
os.system("rm '%s'" % p)
def imagelist2folder(path='data/coco_64img.txt'): # from utils.datasets import *; imagelist2folder()
# Copies all the images in a text file (list of images) into a folder
create_folder(path[:-4])
with open(path, 'r') as f:
for line in f.read().splitlines():
os.system('cp "%s" %s' % (line, path[:-4]))
print(line)
def create_folder(path='./new_folder'):
# Create folder
if os.path.exists(path):
shutil.rmtree(path) # delete output folder
os.makedirs(path) # make new output folder