mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
* Add Hub results.pandas() method New method converts results from torch tensors to pandas DataFrames with column names. This PR may partially resolve issue https://github.com/ultralytics/yolov5/issues/2703 ```python results = model(imgs) print(results.pandas().xyxy[0]) xmin ymin xmax ymax confidence class name 0 57.068970 391.770599 241.383545 905.797852 0.868964 0 person 1 667.661255 399.303589 810.000000 881.396667 0.851888 0 person 2 222.878387 414.774231 343.804474 857.825073 0.838376 0 person 3 4.205386 234.447678 803.739136 750.023376 0.658006 5 bus 4 0.000000 550.596008 76.681190 878.669922 0.450596 0 person ``` * Update comments torch example input now shown resized to size=640 and also now a multiple of P6 stride 64 (see https://github.com/ultralytics/yolov5/issues/2722#issuecomment-814785930) * apply decorators * PEP8 * Update common.py * pd.options.display.max_columns = 10 * Update common.py
154 lines
5.6 KiB
Python
154 lines
5.6 KiB
Python
"""File for accessing YOLOv5 models via PyTorch Hub https://pytorch.org/hub/ultralytics_yolov5/
|
|
|
|
Usage:
|
|
import torch
|
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from models.yolo import Model
|
|
from utils.general import check_requirements, set_logging
|
|
from utils.google_utils import attempt_download
|
|
from utils.torch_utils import select_device
|
|
|
|
dependencies = ['torch', 'yaml']
|
|
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
|
|
set_logging()
|
|
|
|
|
|
def create(name, pretrained, channels, classes, autoshape):
|
|
"""Creates a specified YOLOv5 model
|
|
|
|
Arguments:
|
|
name (str): name of model, i.e. 'yolov5s'
|
|
pretrained (bool): load pretrained weights into the model
|
|
channels (int): number of input channels
|
|
classes (int): number of model classes
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
|
|
try:
|
|
model = Model(config, channels, classes)
|
|
if pretrained:
|
|
fname = f'{name}.pt' # checkpoint filename
|
|
attempt_download(fname) # download if not found locally
|
|
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
|
|
msd = model.state_dict() # model state_dict
|
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
|
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
|
|
model.load_state_dict(csd, strict=False) # load
|
|
if len(ckpt['model'].names) == classes:
|
|
model.names = ckpt['model'].names # set class names attribute
|
|
if autoshape:
|
|
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
|
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
|
return model.to(device)
|
|
|
|
except Exception as e:
|
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
|
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
|
|
raise Exception(s) from e
|
|
|
|
|
|
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True):
|
|
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5s', pretrained, channels, classes, autoshape)
|
|
|
|
|
|
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True):
|
|
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5m', pretrained, channels, classes, autoshape)
|
|
|
|
|
|
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True):
|
|
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5l', pretrained, channels, classes, autoshape)
|
|
|
|
|
|
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True):
|
|
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5x', pretrained, channels, classes, autoshape)
|
|
|
|
|
|
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
|
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments (3 options):
|
|
path_or_model (str): 'path/to/model.pt'
|
|
path_or_model (dict): torch.load('path/to/model.pt')
|
|
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
|
if isinstance(model, dict):
|
|
model = model['ema' if model.get('ema') else 'model'] # load model
|
|
|
|
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
|
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
|
hub_model.names = model.names # class names
|
|
if autoshape:
|
|
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
|
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
|
return hub_model.to(device)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
|
|
# model = custom(path_or_model='path/to/model.pt') # custom example
|
|
|
|
# Verify inference
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
imgs = [Image.open('data/images/bus.jpg'), # PIL
|
|
'data/images/zidane.jpg', # filename
|
|
'https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', # URI
|
|
np.zeros((640, 480, 3))] # numpy
|
|
|
|
results = model(imgs) # batched inference
|
|
results.print()
|
|
results.save()
|