mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
* Update LICENSE to AGPL-3.0 This pull request updates the license of the YOLOv5 project from GNU General Public License v3.0 (GPL-3.0) to GNU Affero General Public License v3.0 (AGPL-3.0). We at Ultralytics have decided to make this change in order to better protect our intellectual property and ensure that any modifications made to the YOLOv5 source code will be shared back with the community when used over a network. AGPL-3.0 is very similar to GPL-3.0, but with an additional clause to address the use of software over a network. This change ensures that if someone modifies YOLOv5 and provides it as a service over a network (e.g., through a web application or API), they must also make the source code of their modified version available to users of the service. This update includes the following changes: - Replace the `LICENSE` file with the AGPL-3.0 license text - Update the license reference in the `README.md` file - Update the license headers in source code files We believe that this change will promote a more collaborative environment and help drive further innovation within the YOLOv5 community. Please review the changes and let us know if you have any questions or concerns. Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update headers to AGPL-3.0 --------- Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
73 lines
2.9 KiB
Python
73 lines
2.9 KiB
Python
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
|
"""
|
|
Auto-batch utils
|
|
"""
|
|
|
|
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from utils.general import LOGGER, colorstr
|
|
from utils.torch_utils import profile
|
|
|
|
|
|
def check_train_batch_size(model, imgsz=640, amp=True):
|
|
# Check YOLOv5 training batch size
|
|
with torch.cuda.amp.autocast(amp):
|
|
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
|
|
|
|
|
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
|
|
# Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
|
|
# Usage:
|
|
# import torch
|
|
# from utils.autobatch import autobatch
|
|
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
|
# print(autobatch(model))
|
|
|
|
# Check device
|
|
prefix = colorstr('AutoBatch: ')
|
|
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
|
device = next(model.parameters()).device # get model device
|
|
if device.type == 'cpu':
|
|
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
|
return batch_size
|
|
if torch.backends.cudnn.benchmark:
|
|
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
|
|
return batch_size
|
|
|
|
# Inspect CUDA memory
|
|
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
|
d = str(device).upper() # 'CUDA:0'
|
|
properties = torch.cuda.get_device_properties(device) # device properties
|
|
t = properties.total_memory / gb # GiB total
|
|
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
|
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
|
f = t - (r + a) # GiB free
|
|
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
|
|
|
# Profile batch sizes
|
|
batch_sizes = [1, 2, 4, 8, 16]
|
|
try:
|
|
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
|
results = profile(img, model, n=3, device=device)
|
|
except Exception as e:
|
|
LOGGER.warning(f'{prefix}{e}')
|
|
|
|
# Fit a solution
|
|
y = [x[2] for x in results if x] # memory [2]
|
|
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
|
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
|
if None in results: # some sizes failed
|
|
i = results.index(None) # first fail index
|
|
if b >= batch_sizes[i]: # y intercept above failure point
|
|
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
|
if b < 1 or b > 1024: # b outside of safe range
|
|
b = batch_size
|
|
LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
|
|
|
|
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
|
|
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
|
|
return b
|