mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
* Update LICENSE to AGPL-3.0 This pull request updates the license of the YOLOv5 project from GNU General Public License v3.0 (GPL-3.0) to GNU Affero General Public License v3.0 (AGPL-3.0). We at Ultralytics have decided to make this change in order to better protect our intellectual property and ensure that any modifications made to the YOLOv5 source code will be shared back with the community when used over a network. AGPL-3.0 is very similar to GPL-3.0, but with an additional clause to address the use of software over a network. This change ensures that if someone modifies YOLOv5 and provides it as a service over a network (e.g., through a web application or API), they must also make the source code of their modified version available to users of the service. This update includes the following changes: - Replace the `LICENSE` file with the AGPL-3.0 license text - Update the license reference in the `README.md` file - Update the license headers in source code files We believe that this change will promote a more collaborative environment and help drive further innovation within the YOLOv5 community. Please review the changes and let us know if you have any questions or concerns. Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update headers to AGPL-3.0 --------- Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
361 lines
14 KiB
Python
361 lines
14 KiB
Python
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
|
"""
|
|
Model validation metrics
|
|
"""
|
|
|
|
import math
|
|
import warnings
|
|
from pathlib import Path
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
|
|
from utils import TryExcept, threaded
|
|
|
|
|
|
def fitness(x):
|
|
# Model fitness as a weighted combination of metrics
|
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
|
return (x[:, :4] * w).sum(1)
|
|
|
|
|
|
def smooth(y, f=0.05):
|
|
# Box filter of fraction f
|
|
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
|
p = np.ones(nf // 2) # ones padding
|
|
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
|
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=''):
|
|
""" Compute the average precision, given the recall and precision curves.
|
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
|
# Arguments
|
|
tp: True positives (nparray, nx1 or nx10).
|
|
conf: Objectness value from 0-1 (nparray).
|
|
pred_cls: Predicted object classes (nparray).
|
|
target_cls: True object classes (nparray).
|
|
plot: Plot precision-recall curve at mAP@0.5
|
|
save_dir: Plot save directory
|
|
# Returns
|
|
The average precision as computed in py-faster-rcnn.
|
|
"""
|
|
|
|
# Sort by objectness
|
|
i = np.argsort(-conf)
|
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
|
|
|
# Find unique classes
|
|
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
|
nc = unique_classes.shape[0] # number of classes, number of detections
|
|
|
|
# Create Precision-Recall curve and compute AP for each class
|
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
|
for ci, c in enumerate(unique_classes):
|
|
i = pred_cls == c
|
|
n_l = nt[ci] # number of labels
|
|
n_p = i.sum() # number of predictions
|
|
if n_p == 0 or n_l == 0:
|
|
continue
|
|
|
|
# Accumulate FPs and TPs
|
|
fpc = (1 - tp[i]).cumsum(0)
|
|
tpc = tp[i].cumsum(0)
|
|
|
|
# Recall
|
|
recall = tpc / (n_l + eps) # recall curve
|
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
|
|
|
# Precision
|
|
precision = tpc / (tpc + fpc) # precision curve
|
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
|
|
|
# AP from recall-precision curve
|
|
for j in range(tp.shape[1]):
|
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
|
if plot and j == 0:
|
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
|
|
|
# Compute F1 (harmonic mean of precision and recall)
|
|
f1 = 2 * p * r / (p + r + eps)
|
|
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
|
names = dict(enumerate(names)) # to dict
|
|
if plot:
|
|
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
|
|
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
|
|
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
|
|
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
|
|
|
|
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
|
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
|
tp = (r * nt).round() # true positives
|
|
fp = (tp / (p + eps) - tp).round() # false positives
|
|
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
|
|
|
|
|
def compute_ap(recall, precision):
|
|
""" Compute the average precision, given the recall and precision curves
|
|
# Arguments
|
|
recall: The recall curve (list)
|
|
precision: The precision curve (list)
|
|
# Returns
|
|
Average precision, precision curve, recall curve
|
|
"""
|
|
|
|
# Append sentinel values to beginning and end
|
|
mrec = np.concatenate(([0.0], recall, [1.0]))
|
|
mpre = np.concatenate(([1.0], precision, [0.0]))
|
|
|
|
# Compute the precision envelope
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
|
|
|
# Integrate area under curve
|
|
method = 'interp' # methods: 'continuous', 'interp'
|
|
if method == 'interp':
|
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
|
else: # 'continuous'
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
|
|
|
return ap, mpre, mrec
|
|
|
|
|
|
class ConfusionMatrix:
|
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
|
self.matrix = np.zeros((nc + 1, nc + 1))
|
|
self.nc = nc # number of classes
|
|
self.conf = conf
|
|
self.iou_thres = iou_thres
|
|
|
|
def process_batch(self, detections, labels):
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
Arguments:
|
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
|
Returns:
|
|
None, updates confusion matrix accordingly
|
|
"""
|
|
if detections is None:
|
|
gt_classes = labels.int()
|
|
for gc in gt_classes:
|
|
self.matrix[self.nc, gc] += 1 # background FN
|
|
return
|
|
|
|
detections = detections[detections[:, 4] > self.conf]
|
|
gt_classes = labels[:, 0].int()
|
|
detection_classes = detections[:, 5].int()
|
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
|
|
|
x = torch.where(iou > self.iou_thres)
|
|
if x[0].shape[0]:
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
|
if x[0].shape[0] > 1:
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
else:
|
|
matches = np.zeros((0, 3))
|
|
|
|
n = matches.shape[0] > 0
|
|
m0, m1, _ = matches.transpose().astype(int)
|
|
for i, gc in enumerate(gt_classes):
|
|
j = m0 == i
|
|
if n and sum(j) == 1:
|
|
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
|
else:
|
|
self.matrix[self.nc, gc] += 1 # true background
|
|
|
|
if n:
|
|
for i, dc in enumerate(detection_classes):
|
|
if not any(m1 == i):
|
|
self.matrix[dc, self.nc] += 1 # predicted background
|
|
|
|
def tp_fp(self):
|
|
tp = self.matrix.diagonal() # true positives
|
|
fp = self.matrix.sum(1) - tp # false positives
|
|
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
|
return tp[:-1], fp[:-1] # remove background class
|
|
|
|
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
|
|
def plot(self, normalize=True, save_dir='', names=()):
|
|
import seaborn as sn
|
|
|
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
|
nc, nn = self.nc, len(names) # number of classes, names
|
|
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
|
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
|
ticklabels = (names + ['background']) if labels else 'auto'
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
|
sn.heatmap(array,
|
|
ax=ax,
|
|
annot=nc < 30,
|
|
annot_kws={
|
|
'size': 8},
|
|
cmap='Blues',
|
|
fmt='.2f',
|
|
square=True,
|
|
vmin=0.0,
|
|
xticklabels=ticklabels,
|
|
yticklabels=ticklabels).set_facecolor((1, 1, 1))
|
|
ax.set_xlabel('True')
|
|
ax.set_ylabel('Predicted')
|
|
ax.set_title('Confusion Matrix')
|
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
|
plt.close(fig)
|
|
|
|
def print(self):
|
|
for i in range(self.nc + 1):
|
|
print(' '.join(map(str, self.matrix[i])))
|
|
|
|
|
|
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
|
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
|
|
|
# Get the coordinates of bounding boxes
|
|
if xywh: # transform from xywh to xyxy
|
|
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
|
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
|
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
|
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
|
else: # x1, y1, x2, y2 = box1
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
|
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
|
|
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
|
|
|
|
# Intersection area
|
|
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
|
|
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
|
|
|
|
# Union Area
|
|
union = w1 * h1 + w2 * h2 - inter + eps
|
|
|
|
# IoU
|
|
iou = inter / union
|
|
if CIoU or DIoU or GIoU:
|
|
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
|
|
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
|
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
|
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
|
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
|
|
with torch.no_grad():
|
|
alpha = v / (v - iou + (1 + eps))
|
|
return iou - (rho2 / c2 + v * alpha) # CIoU
|
|
return iou - rho2 / c2 # DIoU
|
|
c_area = cw * ch + eps # convex area
|
|
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
|
return iou # IoU
|
|
|
|
|
|
def box_iou(box1, box2, eps=1e-7):
|
|
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
Arguments:
|
|
box1 (Tensor[N, 4])
|
|
box2 (Tensor[M, 4])
|
|
Returns:
|
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
|
IoU values for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
|
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
|
|
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
|
|
|
# IoU = inter / (area1 + area2 - inter)
|
|
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
|
|
|
|
|
|
def bbox_ioa(box1, box2, eps=1e-7):
|
|
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
|
box1: np.array of shape(4)
|
|
box2: np.array of shape(nx4)
|
|
returns: np.array of shape(n)
|
|
"""
|
|
|
|
# Get the coordinates of bounding boxes
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
|
|
|
# Intersection area
|
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
|
|
|
# box2 area
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
|
|
|
# Intersection over box2 area
|
|
return inter_area / box2_area
|
|
|
|
|
|
def wh_iou(wh1, wh2, eps=1e-7):
|
|
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
|
wh1 = wh1[:, None] # [N,1,2]
|
|
wh2 = wh2[None] # [1,M,2]
|
|
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter)
|
|
|
|
|
|
# Plots ----------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
@threaded
|
|
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
|
# Precision-recall curve
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
py = np.stack(py, axis=1)
|
|
|
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
|
for i, y in enumerate(py.T):
|
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
|
else:
|
|
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
|
|
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
|
ax.set_xlabel('Recall')
|
|
ax.set_ylabel('Precision')
|
|
ax.set_xlim(0, 1)
|
|
ax.set_ylim(0, 1)
|
|
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
|
|
ax.set_title('Precision-Recall Curve')
|
|
fig.savefig(save_dir, dpi=250)
|
|
plt.close(fig)
|
|
|
|
|
|
@threaded
|
|
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
|
# Metric-confidence curve
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
|
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
|
for i, y in enumerate(py):
|
|
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
|
else:
|
|
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
|
|
|
y = smooth(py.mean(0), 0.05)
|
|
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
|
ax.set_xlabel(xlabel)
|
|
ax.set_ylabel(ylabel)
|
|
ax.set_xlim(0, 1)
|
|
ax.set_ylim(0, 1)
|
|
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
|
|
ax.set_title(f'{ylabel}-Confidence Curve')
|
|
fig.savefig(save_dir, dpi=250)
|
|
plt.close(fig)
|