yolov5/data/coco128.yaml
Glenn Jocher 3883261143
New DetectMultiBackend() class (#5549)
* New `DetectMultiBackend()` class

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* pb to pt fix

* Cleanup

* explicit apply_classifier path

* Cleanup2

* Cleanup3

* Cleanup4

* Cleanup5

* Cleanup6

* val.py MultiBackend inference

* warmup fix

* to device fix

* pt fix

* device fix

* Val cleanup

* COCO128 URL to assets

* half fix

* detect fix

* detect fix 2

* remove half from DetectMultiBackend

* training half handling

* training half handling 2

* training half handling 3

* Cleanup

* Fix CI error

* Add torchscript _extra_files

* Add TorchScript

* Add CoreML

* CoreML cleanup

* New `DetectMultiBackend()` class

* pb to pt fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup

* explicit apply_classifier path

* Cleanup2

* Cleanup3

* Cleanup4

* Cleanup5

* Cleanup6

* val.py MultiBackend inference

* warmup fix

* to device fix

* pt fix

* device fix

* Val cleanup

* COCO128 URL to assets

* half fix

* detect fix

* detect fix 2

* remove half from DetectMultiBackend

* training half handling

* training half handling 2

* training half handling 3

* Cleanup

* Fix CI error

* Add torchscript _extra_files

* Add TorchScript

* Add CoreML

* CoreML cleanup

* revert default to pt

* Add Usage examples

* Cleanup val

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2021-11-09 16:45:02 +01:00

31 lines
1.7 KiB
YAML

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco128 ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
nc: 80 # number of classes
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'] # class names
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128.zip