mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
* New `DetectMultiBackend()` class * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * pb to pt fix * Cleanup * explicit apply_classifier path * Cleanup2 * Cleanup3 * Cleanup4 * Cleanup5 * Cleanup6 * val.py MultiBackend inference * warmup fix * to device fix * pt fix * device fix * Val cleanup * COCO128 URL to assets * half fix * detect fix * detect fix 2 * remove half from DetectMultiBackend * training half handling * training half handling 2 * training half handling 3 * Cleanup * Fix CI error * Add torchscript _extra_files * Add TorchScript * Add CoreML * CoreML cleanup * New `DetectMultiBackend()` class * pb to pt fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup * explicit apply_classifier path * Cleanup2 * Cleanup3 * Cleanup4 * Cleanup5 * Cleanup6 * val.py MultiBackend inference * warmup fix * to device fix * pt fix * device fix * Val cleanup * COCO128 URL to assets * half fix * detect fix * detect fix 2 * remove half from DetectMultiBackend * training half handling * training half handling 2 * training half handling 3 * Cleanup * Fix CI error * Add torchscript _extra_files * Add TorchScript * Add CoreML * CoreML cleanup * revert default to pt * Add Usage examples * Cleanup val Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
31 lines
1.7 KiB
YAML
31 lines
1.7 KiB
YAML
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
|
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
|
|
# Example usage: python train.py --data coco128.yaml
|
|
# parent
|
|
# ├── yolov5
|
|
# └── datasets
|
|
# └── coco128 ← downloads here
|
|
|
|
|
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
path: ../datasets/coco128 # dataset root dir
|
|
train: images/train2017 # train images (relative to 'path') 128 images
|
|
val: images/train2017 # val images (relative to 'path') 128 images
|
|
test: # test images (optional)
|
|
|
|
# Classes
|
|
nc: 80 # number of classes
|
|
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
|
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
|
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
|
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
|
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
|
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
|
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
|
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
|
'hair drier', 'toothbrush'] # class names
|
|
|
|
|
|
# Download script/URL (optional)
|
|
download: https://ultralytics.com/assets/coco128.zip
|