yolov5/models/experimental.py
Glenn Jocher d3ea0df8b9
New YOLOv5 Classification Models (#8956)
* Update

* Logger step fix: Increment step with epochs (#8654)

* enhance

* revert

* allow training from scratch

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update --img argument from train.py 

single line

* fix image size from 640 to 128

* suport custom dataloader and augmentation

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* format

* Update dataloaders.py

* Single line return, single line comment, remove unused argument

* address PR comments

* fix spelling

* don't augment eval set

* use fstring

* update augmentations.py

* new maning convention for transforms

* reverse if statement, inline ops

* reverse if statement, inline ops

* updates

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update dataloaders

* Remove additional if statement

* Remove is_train as redundant

* Cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup2

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update classifier.py

* Update augmentations.py

* fix: imshow clip warning

* update

* Revert ToTensorV2 removal

* Update classifier.py

* Update normalize values, revert uint8

* normalize image using cv2

* remove dedundant comment

* Update classifier.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* replace print with logger

* commit steps

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Allow logging models from GenericLogger (#8676)

* enhance

* revert

* allow training from scratch

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update --img argument from train.py 

single line

* fix image size from 640 to 128

* suport custom dataloader and augmentation

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* format

* Update dataloaders.py

* Single line return, single line comment, remove unused argument

* address PR comments

* fix spelling

* don't augment eval set

* use fstring

* update augmentations.py

* new maning convention for transforms

* reverse if statement, inline ops

* reverse if statement, inline ops

* updates

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update dataloaders

* Remove additional if statement

* Remove is_train as redundant

* Cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup2

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update classifier.py

* Update augmentations.py

* fix: imshow clip warning

* update

* Revert ToTensorV2 removal

* Update classifier.py

* Update normalize values, revert uint8

* normalize image using cv2

* remove dedundant comment

* Update classifier.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* replace print with logger

* commit steps

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support final model logging

* update

* update

* update

* update

* remove curses

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update classifier.py

* Update __init__.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update

* Update

* Update

* Update

* Update dataset download

* Update dataset download

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Pass imgsz to classify_transforms()

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Cos scheduler

* Cos scheduler

* Remove unused args

* Update

* Add seed

* Add seed

* Update

* Update

* Add run(), main()

* Merge master

* Merge master

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Create YOLOv5 BaseModel class (#8829)

* Create BaseModel

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Hub load device fix

* Update

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Add experiment

* Merge master

* Attach names

* weight decay = 1e-4

* weight decay = 5e-5

* update smart_optimizer console printout

* fashion-mnist fix

* Merge master

* Update Table

* Update Table

* Remove destroy process group

* add kwargs to forward()

* fuse fix for resnet50

* nc, names fix for resnet50

* nc, names fix for resnet50

* ONNX CPU inference fix

* revert

* cuda

* if augment or visualize

* if augment or visualize

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* New smart_inference_mode()

* Update README

* Refactor into /classify dir

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* reset defaults

* reset defaults

* fix gpu predict

* warmup

* ema half fix

* spacing

* remove data

* remove cache

* remove denormalize

* save run settings

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* verbose false on initial plots

* new save_yaml() function

* Update ci-testing.yml

* Path(data) CI fix

* Separate classification CI

* fix val

* fix val

* fix val

* smartCrossEntropyLoss

* skip validation on hub load

* autodownload with working dir root

* str(data)

* Dataset usage example

* im_show normalize

* im_show normalize

* add imagenet simple names to multibackend

* Add validation speeds

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* 24-space names

* Update bash scripts

* Update permissions

* Add bash script arguments

* remove verbose

* TRT data fix

* names generator fix

* optimize if names

* update usage

* Add local loading

* Verbose=False

* update names printing

* Add Usage examples

* Add Usage examples

* Add Usage examples

* Add Usage examples

* named_children

* reshape_classifier_outputs

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update

* update

* fix CI

* fix incorrect class substitution

* fix incorrect class substitution

* remove denormalize

* ravel fix

* cleanup

* update opt file printing

* update opt file printing

* update defaults

* add opt to checkpoint

* Add warning

* Add comment

* plot half bug fix

* Use NotImplementedError

* fix export shape report

* Fix TRT load

* cleanup CI

* profile comment

* CI fix

* Add cls models

* avoid inplace error

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix usage examples

* Update README

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 11:59:01 +02:00

108 lines
4.1 KiB
Python

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Experimental modules
"""
import math
import numpy as np
import torch
import torch.nn as nn
from models.common import Conv
from utils.downloads import attempt_download
class Sum(nn.Module):
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, n, weight=False): # n: number of inputs
super().__init__()
self.weight = weight # apply weights boolean
self.iter = range(n - 1) # iter object
if weight:
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
def forward(self, x):
y = x[0] # no weight
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
class MixConv2d(nn.Module):
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
super().__init__()
n = len(k) # number of convolutions
if equal_ch: # equal c_ per group
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
else: # equal weight.numel() per group
b = [c2] + [0] * n
a = np.eye(n + 1, n, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
self.m = nn.ModuleList([
nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU()
def forward(self, x):
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
class Ensemble(nn.ModuleList):
# Ensemble of models
def __init__(self):
super().__init__()
def forward(self, x, augment=False, profile=False, visualize=False):
y = [module(x, augment, profile, visualize)[0] for module in self]
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 1) # nms ensemble
return y, None # inference, train output
def attempt_load(weights, device=None, inplace=True, fuse=True):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
from models.yolo import Detect, Model
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
if not hasattr(ckpt, 'stride'):
ckpt.stride = torch.tensor([32.]) # compatibility update for ResNet etc.
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
# Compatibility updates
for m in model.modules():
t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
m.inplace = inplace # torch 1.7.0 compatibility
if t is Detect and not isinstance(m.anchor_grid, list):
delattr(m, 'anchor_grid')
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model
if len(model) == 1:
return model[-1]
# Return detection ensemble
print(f'Ensemble created with {weights}\n')
for k in 'names', 'nc', 'yaml':
setattr(model, k, getattr(model[0], k))
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
return model