152 lines
6.7 KiB
YAML
152 lines
6.7 KiB
YAML
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
# YOLOv5 Continuous Integration (CI) GitHub Actions tests
|
|
|
|
name: YOLOv5 CI
|
|
|
|
on:
|
|
push:
|
|
branches: [master]
|
|
pull_request:
|
|
branches: [master]
|
|
schedule:
|
|
- cron: "0 0 * * *" # runs at 00:00 UTC every day
|
|
workflow_dispatch:
|
|
|
|
jobs:
|
|
Benchmarks:
|
|
runs-on: ${{ matrix.os }}
|
|
strategy:
|
|
fail-fast: false
|
|
matrix:
|
|
os: [ubuntu-latest]
|
|
python-version: ["3.11"] # requires python<=3.11
|
|
model: [yolov5n]
|
|
steps:
|
|
- uses: actions/checkout@v4
|
|
- uses: actions/setup-python@v5
|
|
with:
|
|
python-version: ${{ matrix.python-version }}
|
|
cache: "pip" # cache pip dependencies
|
|
- name: Install requirements
|
|
run: |
|
|
python -m pip install --upgrade pip wheel
|
|
pip install -r requirements.txt coremltools openvino-dev "tensorflow-cpu<2.15.1" --extra-index-url https://download.pytorch.org/whl/cpu
|
|
yolo checks
|
|
pip list
|
|
- name: Benchmark DetectionModel
|
|
run: |
|
|
python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
|
|
- name: Benchmark SegmentationModel
|
|
run: |
|
|
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
|
|
- name: Test predictions
|
|
run: |
|
|
python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
|
|
python detect.py --weights ${{ matrix.model }}.onnx --img 320
|
|
python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
|
|
python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
|
|
|
|
Tests:
|
|
timeout-minutes: 60
|
|
runs-on: ${{ matrix.os }}
|
|
strategy:
|
|
fail-fast: false
|
|
matrix:
|
|
os: [ubuntu-latest, windows-latest, macos-14] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
|
|
python-version: ["3.11"]
|
|
model: [yolov5n]
|
|
include:
|
|
- os: ubuntu-latest
|
|
python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
|
|
model: yolov5n
|
|
torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
|
|
steps:
|
|
- uses: actions/checkout@v4
|
|
- uses: actions/setup-python@v5
|
|
with:
|
|
python-version: ${{ matrix.python-version }}
|
|
cache: "pip" # caching pip dependencies
|
|
- name: Install requirements
|
|
run: |
|
|
python -m pip install --upgrade pip wheel
|
|
torch=""
|
|
if [ "${{ matrix.torch }}" == "1.8.0" ]; then
|
|
torch="torch==1.8.0 torchvision==0.9.0"
|
|
fi
|
|
pip install -r requirements.txt $torch --extra-index-url https://download.pytorch.org/whl/cpu
|
|
shell: bash # for Windows compatibility
|
|
- name: Check environment
|
|
run: |
|
|
yolo checks
|
|
pip list
|
|
- name: Test detection
|
|
shell: bash # for Windows compatibility
|
|
run: |
|
|
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
|
|
m=${{ matrix.model }} # official weights
|
|
b=runs/train/exp/weights/best # best.pt checkpoint
|
|
python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
|
|
for d in cpu; do # devices
|
|
for w in $m $b; do # weights
|
|
python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
|
|
python detect.py --imgsz 64 --weights $w.pt --device $d # detect
|
|
done
|
|
done
|
|
python hubconf.py --model $m # hub
|
|
# python models/tf.py --weights $m.pt # build TF model
|
|
python models/yolo.py --cfg $m.yaml # build PyTorch model
|
|
python export.py --weights $m.pt --img 64 --include torchscript # export
|
|
python - <<EOF
|
|
import torch
|
|
im = torch.zeros([1, 3, 64, 64])
|
|
for path in '$m', '$b':
|
|
model = torch.hub.load('.', 'custom', path=path, source='local')
|
|
print(model('data/images/bus.jpg'))
|
|
model(im) # warmup, build grids for trace
|
|
torch.jit.trace(model, [im])
|
|
EOF
|
|
- name: Test segmentation
|
|
shell: bash # for Windows compatibility
|
|
run: |
|
|
m=${{ matrix.model }}-seg # official weights
|
|
b=runs/train-seg/exp/weights/best # best.pt checkpoint
|
|
python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
|
|
python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train
|
|
for d in cpu; do # devices
|
|
for w in $m $b; do # weights
|
|
python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
|
|
python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict
|
|
python export.py --weights $w.pt --img 64 --include torchscript --device $d # export
|
|
done
|
|
done
|
|
- name: Test classification
|
|
shell: bash # for Windows compatibility
|
|
run: |
|
|
m=${{ matrix.model }}-cls.pt # official weights
|
|
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
|
|
python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train
|
|
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val
|
|
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict
|
|
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
|
|
python export.py --weights $b --img 64 --include torchscript # export
|
|
python - <<EOF
|
|
import torch
|
|
for path in '$m', '$b':
|
|
model = torch.hub.load('.', 'custom', path=path, source='local')
|
|
EOF
|
|
|
|
Summary:
|
|
runs-on: ubuntu-latest
|
|
needs: [Benchmarks, Tests]
|
|
if: always()
|
|
steps:
|
|
- name: Check for failure and notify
|
|
if: (needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.Benchmarks.result == 'cancelled' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov5' && (github.event_name == 'schedule' || github.event_name == 'push')
|
|
uses: slackapi/slack-github-action@v2.0.0
|
|
with:
|
|
webhook-type: incoming-webhook
|
|
webhook: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
|
|
payload: |
|
|
text: "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"
|