mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
* update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
146 lines
7.2 KiB
Python
146 lines
7.2 KiB
Python
"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
|
|
|
|
Usage:
|
|
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
|
|
"""
|
|
|
|
import argparse
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
|
|
sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
|
|
|
import models
|
|
from models.experimental import attempt_load
|
|
from utils.activations import Hardswish, SiLU
|
|
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
|
|
from utils.torch_utils import select_device
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
|
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
|
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
|
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
|
parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only
|
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
|
|
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
|
|
parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only
|
|
opt = parser.parse_args()
|
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
|
opt.include = [x.lower() for x in opt.include]
|
|
print(opt)
|
|
set_logging()
|
|
t = time.time()
|
|
|
|
# Load PyTorch model
|
|
device = select_device(opt.device)
|
|
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
|
|
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
|
labels = model.names
|
|
|
|
# Input
|
|
gs = int(max(model.stride)) # grid size (max stride)
|
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
|
|
|
# Update model
|
|
if opt.half:
|
|
img, model = img.half(), model.half() # to FP16
|
|
model.train() if opt.train else model.eval() # training mode = no Detect() layer grid construction
|
|
for k, m in model.named_modules():
|
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
|
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
|
if isinstance(m.act, nn.Hardswish):
|
|
m.act = Hardswish()
|
|
elif isinstance(m.act, nn.SiLU):
|
|
m.act = SiLU()
|
|
elif isinstance(m, models.yolo.Detect):
|
|
m.inplace = opt.inplace
|
|
m.onnx_dynamic = opt.dynamic
|
|
# m.forward = m.forward_export # assign forward (optional)
|
|
|
|
for _ in range(2):
|
|
y = model(img) # dry runs
|
|
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
|
|
|
|
# TorchScript export -----------------------------------------------------------------------------------------------
|
|
if 'torchscript' in opt.include or 'coreml' in opt.include:
|
|
prefix = colorstr('TorchScript:')
|
|
try:
|
|
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
|
ts = torch.jit.trace(model, img, strict=False)
|
|
(optimize_for_mobile(ts) if opt.optimize else ts).save(f)
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
except Exception as e:
|
|
print(f'{prefix} export failure: {e}')
|
|
|
|
# ONNX export ------------------------------------------------------------------------------------------------------
|
|
if 'onnx' in opt.include:
|
|
prefix = colorstr('ONNX:')
|
|
try:
|
|
import onnx
|
|
|
|
print(f'{prefix} starting export with onnx {onnx.__version__}...')
|
|
f = opt.weights.replace('.pt', '.onnx') # filename
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version,
|
|
training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL,
|
|
do_constant_folding=not opt.train,
|
|
input_names=['images'],
|
|
output_names=['output'],
|
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
|
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
|
} if opt.dynamic else None)
|
|
|
|
# Checks
|
|
model_onnx = onnx.load(f) # load onnx model
|
|
onnx.checker.check_model(model_onnx) # check onnx model
|
|
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
|
|
|
# Simplify
|
|
if opt.simplify:
|
|
try:
|
|
check_requirements(['onnx-simplifier'])
|
|
import onnxsim
|
|
|
|
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
|
model_onnx, check = onnxsim.simplify(
|
|
model_onnx,
|
|
dynamic_input_shape=opt.dynamic,
|
|
input_shapes={'images': list(img.shape)} if opt.dynamic else None)
|
|
assert check, 'assert check failed'
|
|
onnx.save(model_onnx, f)
|
|
except Exception as e:
|
|
print(f'{prefix} simplifier failure: {e}')
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
except Exception as e:
|
|
print(f'{prefix} export failure: {e}')
|
|
|
|
# CoreML export ----------------------------------------------------------------------------------------------------
|
|
if 'coreml' in opt.include:
|
|
prefix = colorstr('CoreML:')
|
|
try:
|
|
import coremltools as ct
|
|
|
|
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
|
assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
|
|
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
|
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
|
model.save(f)
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
except Exception as e:
|
|
print(f'{prefix} export failure: {e}')
|
|
|
|
# Finish
|
|
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|