146 lines
7.2 KiB
Python
146 lines
7.2 KiB
Python
"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
|
|
|
|
Usage:
|
|
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
|
|
"""
|
|
|
|
import argparse
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
|
|
sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
|
|
|
import models
|
|
from models.experimental import attempt_load
|
|
from utils.activations import Hardswish, SiLU
|
|
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
|
|
from utils.torch_utils import select_device
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
|
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
|
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
|
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
|
parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only
|
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
|
|
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
|
|
parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only
|
|
opt = parser.parse_args()
|
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
|
opt.include = [x.lower() for x in opt.include]
|
|
print(opt)
|
|
set_logging()
|
|
t = time.time()
|
|
|
|
# Load PyTorch model
|
|
device = select_device(opt.device)
|
|
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
|
|
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
|
labels = model.names
|
|
|
|
# Input
|
|
gs = int(max(model.stride)) # grid size (max stride)
|
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
|
|
|
# Update model
|
|
if opt.half:
|
|
img, model = img.half(), model.half() # to FP16
|
|
model.train() if opt.train else model.eval() # training mode = no Detect() layer grid construction
|
|
for k, m in model.named_modules():
|
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
|
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
|
if isinstance(m.act, nn.Hardswish):
|
|
m.act = Hardswish()
|
|
elif isinstance(m.act, nn.SiLU):
|
|
m.act = SiLU()
|
|
elif isinstance(m, models.yolo.Detect):
|
|
m.inplace = opt.inplace
|
|
m.onnx_dynamic = opt.dynamic
|
|
# m.forward = m.forward_export # assign forward (optional)
|
|
|
|
for _ in range(2):
|
|
y = model(img) # dry runs
|
|
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
|
|
|
|
# TorchScript export -----------------------------------------------------------------------------------------------
|
|
if 'torchscript' in opt.include or 'coreml' in opt.include:
|
|
prefix = colorstr('TorchScript:')
|
|
try:
|
|
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
|
ts = torch.jit.trace(model, img, strict=False)
|
|
(optimize_for_mobile(ts) if opt.optimize else ts).save(f)
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
except Exception as e:
|
|
print(f'{prefix} export failure: {e}')
|
|
|
|
# ONNX export ------------------------------------------------------------------------------------------------------
|
|
if 'onnx' in opt.include:
|
|
prefix = colorstr('ONNX:')
|
|
try:
|
|
import onnx
|
|
|
|
print(f'{prefix} starting export with onnx {onnx.__version__}...')
|
|
f = opt.weights.replace('.pt', '.onnx') # filename
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version,
|
|
training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL,
|
|
do_constant_folding=not opt.train,
|
|
input_names=['images'],
|
|
output_names=['output'],
|
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
|
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
|
} if opt.dynamic else None)
|
|
|
|
# Checks
|
|
model_onnx = onnx.load(f) # load onnx model
|
|
onnx.checker.check_model(model_onnx) # check onnx model
|
|
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
|
|
|
# Simplify
|
|
if opt.simplify:
|
|
try:
|
|
check_requirements(['onnx-simplifier'])
|
|
import onnxsim
|
|
|
|
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
|
model_onnx, check = onnxsim.simplify(
|
|
model_onnx,
|
|
dynamic_input_shape=opt.dynamic,
|
|
input_shapes={'images': list(img.shape)} if opt.dynamic else None)
|
|
assert check, 'assert check failed'
|
|
onnx.save(model_onnx, f)
|
|
except Exception as e:
|
|
print(f'{prefix} simplifier failure: {e}')
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
except Exception as e:
|
|
print(f'{prefix} export failure: {e}')
|
|
|
|
# CoreML export ----------------------------------------------------------------------------------------------------
|
|
if 'coreml' in opt.include:
|
|
prefix = colorstr('CoreML:')
|
|
try:
|
|
import coremltools as ct
|
|
|
|
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
|
assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
|
|
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
|
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
|
model.save(f)
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
except Exception as e:
|
|
print(f'{prefix} export failure: {e}')
|
|
|
|
# Finish
|
|
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|