yolov5/models/export.py
Glenn Jocher f3c3d2ce5d
Merge develop branch into master (#3518)
* update ci-testing.yml (#3322)

* update ci-testing.yml

* update greetings.yml

* bring back os matrix

* update ci-testing.yml (#3322)

* update ci-testing.yml

* update greetings.yml

* bring back os matrix

* Enable direct `--weights URL` definition (#3373)

* Enable direct `--weights URL` definition

@KalenMike this PR will enable direct --weights URL definition. Example use case:
```
python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt
```

* cleanup

* bug fixes

* weights = attempt_download(weights)

* Update experimental.py

* Update hubconf.py

* return bug fix

* comment mirror

* min_bytes

* Update tutorial.ipynb (#3368)

add Open in Kaggle badge

* `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)

* Update datasets.py

* comment

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* COCO evolution fix (#3388)

* COCO evolution fix

* cleanup

* update print

* print fix

* Create `is_pip()` function (#3391)

Returns `True` if file is part of pip package. Useful for contextual behavior modification.

```python
def is_pip():
    # Is file in a pip package?
    return 'site-packages' in Path(__file__).absolute().parts
```

* Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395)

This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24.

* Update FLOPs description (#3422)

* Update README.md

* Changing FLOPS to FLOPs.

Co-authored-by: BuildTools <unconfigured@null.spigotmc.org>

* Parse URL authentication (#3424)

* Parse URL authentication

* urllib.parse.unquote()

* improved error handling

* improved error handling

* remove %3F

* update check_file()

* Add FLOPs title to table (#3453)

* Suppress jit trace warning + graph once (#3454)

* Suppress jit trace warning + graph once

Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0.

* Update train.py

* Update MixUp augmentation `alpha=beta=32.0` (#3455)

Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye

* Add `timeout()` class (#3460)

* Add `timeout()` class

* rearrange order

* Faster HSV augmentation (#3462)

remove datatype conversion process that can be skipped

* Add `check_git_status()` 5 second timeout (#3464)

* Add check_git_status() 5 second timeout

This should prevent the SSH Git bug that we were discussing @KalenMike

* cleanup

* replace timeout with check_output built-in timeout

* Improved `check_requirements()` offline-handling (#3466)

Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline).

* Add `output_names` argument for ONNX export with dynamic axes (#3456)

* Add output names & dynamic axes for onnx export

Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3

* use first output only + cleanup

Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423)

* fixed inference bug ,while use half precision

* replace --use-half with --half

* replace space and PEP8 in detect.py

* PEP8 detect.py

* update --half help comment

* Update test.py

* revert space

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add additional links/resources to stale.yml message (#3467)

* Update stale.yml

* cleanup

* Update stale.yml

* reformat

* Update stale.yml HUB URL (#3468)

* Stale `github.actor` bug fix (#3483)

* Explicit `model.eval()` call `if opt.train=False` (#3475)

* call model.eval() when opt.train is False

call model.eval() when opt.train is False

* single-line if statement

* cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* check_requirements() exclude `opencv-python` (#3495)

Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494.

* Earlier `assert` for cpu and half option (#3508)

* early assert for cpu and half option

early assert for cpu and half option

* Modified comment

Modified comment

* Update tutorial.ipynb (#3510)

* Reduce test.py results spacing (#3511)

* Update README.md (#3512)

* Update README.md

Minor modifications

* 850 width

* Update greetings.yml

revert greeting change as PRs will now merge to master.

Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com>
Co-authored-by: SkalskiP <piotr.skalski92@gmail.com>
Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com>
Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com>
Co-authored-by: chocosaj <chocosaj@users.noreply.github.com>
Co-authored-by: BuildTools <unconfigured@null.spigotmc.org>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com>
Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai>
Co-authored-by: edificewang <609552430@qq.com>
2021-06-08 10:22:10 +02:00

146 lines
7.2 KiB
Python

"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
Usage:
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
"""
import argparse
import sys
import time
from pathlib import Path
sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
import models
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
from utils.torch_utils import select_device
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
parser.add_argument('--train', action='store_true', help='model.train() mode')
parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
opt.include = [x.lower() for x in opt.include]
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(opt.weights, map_location=device) # load FP32 model
labels = model.names
# Input
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
# Update model
if opt.half:
img, model = img.half(), model.half() # to FP16
model.train() if opt.train else model.eval() # training mode = no Detect() layer grid construction
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, models.yolo.Detect):
m.inplace = opt.inplace
m.onnx_dynamic = opt.dynamic
# m.forward = m.forward_export # assign forward (optional)
for _ in range(2):
y = model(img) # dry runs
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
# TorchScript export -----------------------------------------------------------------------------------------------
if 'torchscript' in opt.include or 'coreml' in opt.include:
prefix = colorstr('TorchScript:')
try:
print(f'\n{prefix} starting export with torch {torch.__version__}...')
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
ts = torch.jit.trace(model, img, strict=False)
(optimize_for_mobile(ts) if opt.optimize else ts).save(f)
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'{prefix} export failure: {e}')
# ONNX export ------------------------------------------------------------------------------------------------------
if 'onnx' in opt.include:
prefix = colorstr('ONNX:')
try:
import onnx
print(f'{prefix} starting export with onnx {onnx.__version__}...')
f = opt.weights.replace('.pt', '.onnx') # filename
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version,
training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not opt.train,
input_names=['images'],
output_names=['output'],
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
} if opt.dynamic else None)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
# Simplify
if opt.simplify:
try:
check_requirements(['onnx-simplifier'])
import onnxsim
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=opt.dynamic,
input_shapes={'images': list(img.shape)} if opt.dynamic else None)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
print(f'{prefix} simplifier failure: {e}')
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'{prefix} export failure: {e}')
# CoreML export ----------------------------------------------------------------------------------------------------
if 'coreml' in opt.include:
prefix = colorstr('CoreML:')
try:
import coremltools as ct
print(f'{prefix} starting export with coremltools {ct.__version__}...')
assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'{prefix} export failure: {e}')
# Finish
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')