yolov7/export.py

206 lines
8.9 KiB
Python
Raw Normal View History

2022-07-06 23:23:27 +08:00
import argparse
import sys
import time
2022-08-02 06:40:08 +08:00
import warnings
2022-07-06 23:23:27 +08:00
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
2022-07-06 23:23:27 +08:00
import models
from models.experimental import attempt_load, End2End
2022-07-06 23:23:27 +08:00
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_device
End2end (#61) * export end2end onnx model * fixbug * add web demo (#58) * Update README.md * main code update yolov7-tiny deploy cfg * main code update yolov7-tiny training cfg * main code @liguagua752109150 https://github.com/WongKinYiu/yolov7/issues/33#issuecomment-1178669212 * main code @albertfaromatics https://github.com/WongKinYiu/yolov7/issues/35#issuecomment-1178800685 * main code update link * main code add custom hyp * main code update default activation function * main code update path * main figure add more tasks * main code update readme * main code update reparameterization * Update README.md * main code update readme * main code update aux training * main code update aux training * main code update aux training * main figure update yolov7 prediction * main code update readme * main code rename * main code rename * main code rename * main code rename * main code update readme * main code update visualization * main code fix gain for train_aux * main code update loss * main code update instance segmentation demo * main code update keypoint detection demo * main code update pose demo * main code update pose * main code update pose * main code update pose * main code update pose * main code update trace * Update README.md * main code fix ciou * main code fix nan of aux training https://github.com/WongKinYiu/yolov7/issues/250#issue-1312356380 @hudingding * support onnx to tensorrt convert (#114) * fuse IDetect (#148) * Fixes #199 (#203) * minor fix * resolve conflict * resolve conflict * resolve conflict * resolve conflict * resolve conflict * resolve * resolve * resolve * resolve Co-authored-by: AK391 <81195143+AK391@users.noreply.github.com> Co-authored-by: Alexey <AlexeyAB@users.noreply.github.com> Co-authored-by: Kin-Yiu, Wong <102582011@cc.ncu.edu.tw> Co-authored-by: linghu8812 <36389436+linghu8812@users.noreply.github.com> Co-authored-by: Alexander <84590713+SashaAlderson@users.noreply.github.com> Co-authored-by: Ben Raymond <ben@theraymonds.org> Co-authored-by: AlexeyAB84 <alexeyab84@gmail.com>
2022-07-22 21:24:13 +08:00
from utils.add_nms import RegisterNMS
2022-07-06 23:23:27 +08:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
2022-07-06 23:23:27 +08:00
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
2022-07-06 23:23:27 +08:00
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
End2end (#61) * export end2end onnx model * fixbug * add web demo (#58) * Update README.md * main code update yolov7-tiny deploy cfg * main code update yolov7-tiny training cfg * main code @liguagua752109150 https://github.com/WongKinYiu/yolov7/issues/33#issuecomment-1178669212 * main code @albertfaromatics https://github.com/WongKinYiu/yolov7/issues/35#issuecomment-1178800685 * main code update link * main code add custom hyp * main code update default activation function * main code update path * main figure add more tasks * main code update readme * main code update reparameterization * Update README.md * main code update readme * main code update aux training * main code update aux training * main code update aux training * main figure update yolov7 prediction * main code update readme * main code rename * main code rename * main code rename * main code rename * main code update readme * main code update visualization * main code fix gain for train_aux * main code update loss * main code update instance segmentation demo * main code update keypoint detection demo * main code update pose demo * main code update pose * main code update pose * main code update pose * main code update pose * main code update trace * Update README.md * main code fix ciou * main code fix nan of aux training https://github.com/WongKinYiu/yolov7/issues/250#issue-1312356380 @hudingding * support onnx to tensorrt convert (#114) * fuse IDetect (#148) * Fixes #199 (#203) * minor fix * resolve conflict * resolve conflict * resolve conflict * resolve conflict * resolve conflict * resolve * resolve * resolve * resolve Co-authored-by: AK391 <81195143+AK391@users.noreply.github.com> Co-authored-by: Alexey <AlexeyAB@users.noreply.github.com> Co-authored-by: Kin-Yiu, Wong <102582011@cc.ncu.edu.tw> Co-authored-by: linghu8812 <36389436+linghu8812@users.noreply.github.com> Co-authored-by: Alexander <84590713+SashaAlderson@users.noreply.github.com> Co-authored-by: Ben Raymond <ben@theraymonds.org> Co-authored-by: AlexeyAB84 <alexeyab84@gmail.com>
2022-07-22 21:24:13 +08:00
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
2022-08-02 06:40:08 +08:00
parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
2022-07-06 23:23:27 +08:00
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
opt.dynamic = opt.dynamic and not opt.end2end
opt.dynamic = False if opt.dynamic_batch else opt.dynamic
2022-07-06 23:23:27 +08:00
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
model = attempt_load(opt.weights, map_location=device) # load FP32 model
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
# elif isinstance(m, models.yolo.Detect):
# m.forward = m.forward_export # assign forward (optional)
model.model[-1].export = not opt.grid # set Detect() layer grid export
y = model(img) # dry run
End2end (#61) * export end2end onnx model * fixbug * add web demo (#58) * Update README.md * main code update yolov7-tiny deploy cfg * main code update yolov7-tiny training cfg * main code @liguagua752109150 https://github.com/WongKinYiu/yolov7/issues/33#issuecomment-1178669212 * main code @albertfaromatics https://github.com/WongKinYiu/yolov7/issues/35#issuecomment-1178800685 * main code update link * main code add custom hyp * main code update default activation function * main code update path * main figure add more tasks * main code update readme * main code update reparameterization * Update README.md * main code update readme * main code update aux training * main code update aux training * main code update aux training * main figure update yolov7 prediction * main code update readme * main code rename * main code rename * main code rename * main code rename * main code update readme * main code update visualization * main code fix gain for train_aux * main code update loss * main code update instance segmentation demo * main code update keypoint detection demo * main code update pose demo * main code update pose * main code update pose * main code update pose * main code update pose * main code update trace * Update README.md * main code fix ciou * main code fix nan of aux training https://github.com/WongKinYiu/yolov7/issues/250#issue-1312356380 @hudingding * support onnx to tensorrt convert (#114) * fuse IDetect (#148) * Fixes #199 (#203) * minor fix * resolve conflict * resolve conflict * resolve conflict * resolve conflict * resolve conflict * resolve * resolve * resolve * resolve Co-authored-by: AK391 <81195143+AK391@users.noreply.github.com> Co-authored-by: Alexey <AlexeyAB@users.noreply.github.com> Co-authored-by: Kin-Yiu, Wong <102582011@cc.ncu.edu.tw> Co-authored-by: linghu8812 <36389436+linghu8812@users.noreply.github.com> Co-authored-by: Alexander <84590713+SashaAlderson@users.noreply.github.com> Co-authored-by: Ben Raymond <ben@theraymonds.org> Co-authored-by: AlexeyAB84 <alexeyab84@gmail.com>
2022-07-22 21:24:13 +08:00
if opt.include_nms:
model.model[-1].include_nms = True
y = None
2022-08-02 06:40:08 +08:00
2022-07-06 23:23:27 +08:00
# TorchScript export
try:
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
ts = torch.jit.trace(model, img, strict=False)
ts.save(f)
print('TorchScript export success, saved as %s' % f)
except Exception as e:
print('TorchScript export failure: %s' % e)
2022-08-02 06:40:08 +08:00
# CoreML export
try:
import coremltools as ct
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
# convert model from torchscript and apply pixel scaling as per detect.py
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
if bits < 32:
2022-08-08 15:17:04 +08:00
if sys.platform.lower() == 'darwin': # quantization only supported on macOS
2022-08-02 06:40:08 +08:00
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
else:
print('quantization only supported on macOS, skipping...')
2022-08-02 06:40:08 +08:00
f = opt.weights.replace('.pt', '.mlmodel') # filename
ct_model.save(f)
print('CoreML export success, saved as %s' % f)
except Exception as e:
print('CoreML export failure: %s' % e)
# TorchScript-Lite export
try:
print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
f = opt.weights.replace('.pt', '.torchscript.ptl') # filename
2022-08-02 06:40:08 +08:00
tsl = torch.jit.trace(model, img, strict=False)
tsl = optimize_for_mobile(tsl)
tsl._save_for_lite_interpreter(f)
print('TorchScript-Lite export success, saved as %s' % f)
except Exception as e:
print('TorchScript-Lite export failure: %s' % e)
2022-07-06 23:23:27 +08:00
# ONNX export
try:
import onnx
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx') # filename
model.eval()
output_names = ['classes', 'boxes'] if y is None else ['output']
dynamic_axes = None
if opt.dynamic:
dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
'output': {0: 'batch', 2: 'y', 3: 'x'}}
if opt.dynamic_batch:
opt.batch_size = 'batch'
dynamic_axes = {
'images': {
0: 'batch',
}, }
if opt.end2end and opt.max_wh is None:
output_axes = {
'num_dets': {0: 'batch'},
'det_boxes': {0: 'batch'},
'det_scores': {0: 'batch'},
'det_classes': {0: 'batch'},
}
else:
output_axes = {
'output': {0: 'batch'},
}
dynamic_axes.update(output_axes)
if opt.grid:
if opt.end2end:
print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device)
if opt.end2end and opt.max_wh is None:
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
else:
output_names = ['output']
else:
model.model[-1].concat = True
2022-07-06 23:23:27 +08:00
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
output_names=output_names,
dynamic_axes=dynamic_axes)
2022-07-06 23:23:27 +08:00
2022-07-22 22:04:38 +08:00
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
if opt.end2end and opt.max_wh is None:
for i in onnx_model.graph.output:
for j in i.type.tensor_type.shape.dim:
j.dim_param = str(shapes.pop(0))
2022-07-22 22:04:38 +08:00
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
# # Metadata
# d = {'stride': int(max(model.stride))}
# for k, v in d.items():
# meta = onnx_model.metadata_props.add()
# meta.key, meta.value = k, str(v)
# onnx.save(onnx_model, f)
if opt.simplify:
try:
import onnxsim
print('\nStarting to simplify ONNX...')
onnx_model, check = onnxsim.simplify(onnx_model)
assert check, 'assert check failed'
except Exception as e:
print(f'Simplifier failure: {e}')
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
onnx.save(onnx_model,f)
2022-07-06 23:23:27 +08:00
print('ONNX export success, saved as %s' % f)
2022-07-22 22:04:38 +08:00
if opt.include_nms:
print('Registering NMS plugin for ONNX...')
mo = RegisterNMS(f)
mo.register_nms()
mo.save(f)
2022-07-06 23:23:27 +08:00
except Exception as e:
print('ONNX export failure: %s' % e)
# Finish
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))