mirror of https://github.com/WongKinYiu/yolov7.git
203 lines
10 KiB
Python
203 lines
10 KiB
Python
|
import argparse
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
|
||
|
import os
|
||
|
import copy
|
||
|
import cv2
|
||
|
import torch
|
||
|
import torch.backends.cudnn as cudnn
|
||
|
from numpy import random
|
||
|
|
||
|
from models.experimental import attempt_load
|
||
|
from utils.datasets import LoadStreams, LoadImages
|
||
|
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
|
||
|
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
|
||
|
from utils.plots import colors, plot_one_box
|
||
|
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||
|
|
||
|
|
||
|
def detect(opt):
|
||
|
source, weights, view_img, save_txt, imgsz, save_txt_tidl, kpt_label = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.save_txt_tidl, opt.kpt_label
|
||
|
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
|
||
|
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
||
|
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
||
|
|
||
|
# Directories
|
||
|
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
|
||
|
(save_dir / 'labels' if (save_txt or save_txt_tidl) else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||
|
|
||
|
# Initialize
|
||
|
set_logging()
|
||
|
device = select_device(opt.device)
|
||
|
half = device.type != 'cpu' and not save_txt_tidl # half precision only supported on CUDA
|
||
|
|
||
|
# Load model
|
||
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
||
|
stride = int(model.stride.max()) # model stride
|
||
|
if isinstance(imgsz, (list,tuple)):
|
||
|
assert len(imgsz) ==2; "height and width of image has to be specified"
|
||
|
imgsz[0] = check_img_size(imgsz[0], s=stride)
|
||
|
imgsz[1] = check_img_size(imgsz[1], s=stride)
|
||
|
else:
|
||
|
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
||
|
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||
|
if half:
|
||
|
model.half() # to FP16
|
||
|
|
||
|
# Second-stage classifier
|
||
|
classify = False
|
||
|
if classify:
|
||
|
modelc = load_classifier(name='resnet101', n=2) # initialize
|
||
|
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
||
|
|
||
|
# Set Dataloader
|
||
|
vid_path, vid_writer = None, None
|
||
|
if webcam:
|
||
|
view_img = check_imshow()
|
||
|
cudnn.benchmark = True # set True to speed up constant image size inference
|
||
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
|
||
|
else:
|
||
|
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
||
|
|
||
|
# Run inference
|
||
|
if device.type != 'cpu':
|
||
|
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
||
|
t0 = time.time()
|
||
|
for path, img, im0s, vid_cap in dataset:
|
||
|
img = torch.from_numpy(img).to(device)
|
||
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||
|
if img.ndimension() == 3:
|
||
|
img = img.unsqueeze(0)
|
||
|
|
||
|
# Inference
|
||
|
t1 = time_synchronized()
|
||
|
pred = model(img, augment=opt.augment)[0]
|
||
|
print(pred[...,4].max())
|
||
|
# Apply NMS
|
||
|
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms, kpt_label=kpt_label)
|
||
|
t2 = time_synchronized()
|
||
|
|
||
|
# Apply Classifier
|
||
|
if classify:
|
||
|
pred = apply_classifier(pred, modelc, img, im0s)
|
||
|
|
||
|
# Process detections
|
||
|
for i, det in enumerate(pred): # detections per image
|
||
|
if webcam: # batch_size >= 1
|
||
|
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
||
|
else:
|
||
|
p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
|
||
|
|
||
|
p = Path(p) # to Path
|
||
|
save_path = str(save_dir / p.name) # img.jpg
|
||
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
||
|
s += '%gx%g ' % img.shape[2:] # print string
|
||
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||
|
if len(det):
|
||
|
# Rescale boxes from img_size to im0 size
|
||
|
scale_coords(img.shape[2:], det[:, :4], im0.shape, kpt_label=False)
|
||
|
scale_coords(img.shape[2:], det[:, 6:], im0.shape, kpt_label=kpt_label, step=3)
|
||
|
|
||
|
# Print results
|
||
|
for c in det[:, 5].unique():
|
||
|
n = (det[:, 5] == c).sum() # detections per class
|
||
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||
|
|
||
|
# Write results
|
||
|
for det_index, (*xyxy, conf, cls) in enumerate(reversed(det[:,:6])):
|
||
|
if save_txt: # Write to file
|
||
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||
|
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
||
|
with open(txt_path + '.txt', 'a') as f:
|
||
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||
|
|
||
|
if save_img or opt.save_crop or view_img: # Add bbox to image
|
||
|
c = int(cls) # integer class
|
||
|
label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
|
||
|
kpts = det[det_index, 6:]
|
||
|
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness, kpt_label=kpt_label, kpts=kpts, steps=3, orig_shape=im0.shape[:2])
|
||
|
if opt.save_crop:
|
||
|
save_one_box(xyxy, im0s, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
||
|
|
||
|
|
||
|
if save_txt_tidl: # Write to file in tidl dump format
|
||
|
for *xyxy, conf, cls in det_tidl:
|
||
|
xyxy = torch.tensor(xyxy).view(-1).tolist()
|
||
|
line = (conf, cls, *xyxy) if opt.save_conf else (cls, *xyxy) # label format
|
||
|
with open(txt_path + '.txt', 'a') as f:
|
||
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||
|
|
||
|
# Print time (inference + NMS)
|
||
|
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
||
|
|
||
|
# Stream results
|
||
|
if view_img:
|
||
|
cv2.imshow(str(p), im0)
|
||
|
cv2.waitKey(1) # 1 millisecond
|
||
|
|
||
|
# Save results (image with detections)
|
||
|
if save_img:
|
||
|
if dataset.mode == 'image':
|
||
|
cv2.imwrite(save_path, im0)
|
||
|
else: # 'video' or 'stream'
|
||
|
if vid_path != save_path: # new video
|
||
|
vid_path = save_path
|
||
|
if isinstance(vid_writer, cv2.VideoWriter):
|
||
|
vid_writer.release() # release previous video writer
|
||
|
if vid_cap: # video
|
||
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||
|
else: # stream
|
||
|
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||
|
save_path += '.mp4'
|
||
|
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||
|
vid_writer.write(im0)
|
||
|
|
||
|
if save_txt or save_txt_tidl or save_img:
|
||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt or save_txt_tidl else ''
|
||
|
print(f"Results saved to {save_dir}{s}")
|
||
|
|
||
|
print(f'Done. ({time.time() - t0:.3f}s)')
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
||
|
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
|
||
|
parser.add_argument('--img-size', nargs= '+', type=int, default=640, help='inference size (pixels)')
|
||
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
||
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||
|
parser.add_argument('--view-img', action='store_true', help='display results')
|
||
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||
|
parser.add_argument('--save-txt-tidl', action='store_true', help='save results to *.txt in tidl format')
|
||
|
parser.add_argument('--save-bin', action='store_true', help='save base n/w outputs in raw bin format')
|
||
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||
|
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
||
|
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
||
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
||
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
||
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||
|
parser.add_argument('--update', action='store_true', help='update all models')
|
||
|
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
||
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||
|
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
||
|
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
||
|
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
||
|
parser.add_argument('--kpt-label', action='store_true', help='use keypoint labels')
|
||
|
opt = parser.parse_args()
|
||
|
print(opt)
|
||
|
check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
|
||
|
|
||
|
with torch.no_grad():
|
||
|
if opt.update: # update all models (to fix SourceChangeWarning)
|
||
|
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||
|
detect(opt=opt)
|
||
|
strip_optimizer(opt.weights)
|
||
|
else:
|
||
|
detect(opt=opt)
|