mirror of https://github.com/WongKinYiu/yolov7.git
Update yolo.py
parent
3708cdedd2
commit
1b0db446cf
|
@ -307,6 +307,93 @@ class IKeypoint(nn.Module):
|
|||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||
|
||||
class MT(nn.Module):
|
||||
stride = None # strides computed during build
|
||||
export = False # onnx export
|
||||
|
||||
def __init__(self, nc=80, anchors=(), attn=None, mask_iou=False, ch=()): # detection layer
|
||||
super(MT, self).__init__()
|
||||
self.nc = nc # number of classes
|
||||
self.no = nc + 5 # number of outputs per anchor
|
||||
self.nl = len(anchors) # number of detection layers
|
||||
self.na = len(anchors[0]) // 2 # number of anchors
|
||||
self.grid = [torch.zeros(1)] * self.nl # init grid
|
||||
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
||||
self.register_buffer('anchors', a) # shape(nl,na,2)
|
||||
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
||||
self.original_anchors = anchors
|
||||
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[0]) # output conv
|
||||
if mask_iou:
|
||||
self.m_iou = nn.ModuleList(nn.Conv2d(x, self.na, 1) for x in ch[0]) # output con
|
||||
self.mask_iou = mask_iou
|
||||
self.attn = attn
|
||||
if attn is not None:
|
||||
# self.attn_m = nn.ModuleList(nn.Conv2d(x, attn * self.na, 3, padding=1) for x in ch) # output conv
|
||||
self.attn_m = nn.ModuleList(nn.Conv2d(x, attn * self.na, 1) for x in ch[0]) # output conv
|
||||
#self.attn_m = nn.ModuleList(nn.Conv2d(x, attn * self.na, kernel_size=3, stride=1, padding=1) for x in ch) # output conv
|
||||
|
||||
def forward(self, x):
|
||||
#print(x[1].shape)
|
||||
#print(x[2].shape)
|
||||
#print([a.shape for a in x])
|
||||
#exit()
|
||||
# x = x.copy() # for profiling
|
||||
z = [] # inference output
|
||||
za = []
|
||||
zi = []
|
||||
attn = [None] * self.nl
|
||||
iou = [None] * self.nl
|
||||
self.training |= self.export
|
||||
output = dict()
|
||||
for i in range(self.nl):
|
||||
if self.attn is not None:
|
||||
attn[i] = self.attn_m[i](x[0][i]) # conv
|
||||
bs, _, ny, nx = attn[i].shape # x(bs,2352,20,20) to x(bs,3,20,20,784)
|
||||
attn[i] = attn[i].view(bs, self.na, self.attn, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||
if self.mask_iou:
|
||||
iou[i] = self.m_iou[i](x[0][i])
|
||||
x[0][i] = self.m[i](x[0][i]) # conv
|
||||
|
||||
bs, _, ny, nx = x[0][i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||
x[0][i] = x[0][i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||
if self.mask_iou:
|
||||
iou[i] = iou[i].view(bs, self.na, ny, nx).contiguous()
|
||||
|
||||
if not self.training: # inference
|
||||
za.append(attn[i].view(bs, -1, self.attn))
|
||||
if self.mask_iou:
|
||||
zi.append(iou[i].view(bs, -1))
|
||||
if self.grid[i].shape[2:4] != x[0][i].shape[2:4]:
|
||||
self.grid[i] = self._make_grid(nx, ny).to(x[0][i].device)
|
||||
|
||||
y = x[0][i].sigmoid()
|
||||
y[..., 0:2] = (y[..., 0:2] * 3. - 1.0 + self.grid[i]) * self.stride[i] # xy
|
||||
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
z.append(y.view(bs, -1, self.no))
|
||||
output["mask_iou"] = None
|
||||
if not self.training:
|
||||
output["test"] = torch.cat(z, 1)
|
||||
if self.attn is not None:
|
||||
output["attn"] = torch.cat(za, 1)
|
||||
if self.mask_iou:
|
||||
output["mask_iou"] = torch.cat(zi, 1).sigmoid()
|
||||
|
||||
else:
|
||||
if self.attn is not None:
|
||||
output["attn"] = attn
|
||||
if self.mask_iou:
|
||||
output["mask_iou"] = iou
|
||||
output["bbox_and_cls"] = x[0]
|
||||
output["bases"] = x[1]
|
||||
output["sem"] = x[2]
|
||||
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def _make_grid(nx=20, ny=20):
|
||||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||
|
||||
|
||||
class IAuxDetect(nn.Module):
|
||||
stride = None # strides computed during build
|
||||
|
@ -793,6 +880,16 @@ def parse_model(d, ch): # model_dict, input_channels(3)
|
|||
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||
elif m is ReOrg:
|
||||
c2 = ch[f] * 4
|
||||
elif m in [Merge]:
|
||||
c2 = args[0]
|
||||
elif m in [MT]:
|
||||
if len(args) == 3:
|
||||
args.append(False)
|
||||
#print(f)
|
||||
#print(len(ch))
|
||||
#for x in f:
|
||||
# print(ch[x])
|
||||
args.append([ch[x] for x in f])
|
||||
elif m is Contract:
|
||||
c2 = ch[f] * args[0] ** 2
|
||||
elif m is Expand:
|
||||
|
|
Loading…
Reference in New Issue